BPS Black Holes, the Hesse Potential and the Topological String

Gabriel Lopes Cardoso

with Bernard de Wit and Swapna Mahapatra, to appear

December 21, 2009

INSTITUTO SUPERIOR TÉCNICO Universidade Técnica de Lisboa

BPS Black Holes

Consider

- supersymmetric (BPS) black holes in four-dimensional N = 2 supergravity theories,
- single-center, static, dyonic, with electric/magnetic charges (q_l, p^l) ,
- supported by complex scalar fields Y'.

Lagrangian with higher-curvature interactions \propto Weyl²: (Υ , C^2)

$$L = R + F^{(0)}(Y) F_{\mu\nu}^2 + \left(F^{(1)}(Y) + F^{(2)}(Y) \Upsilon + \dots\right) C^2$$

Couplings can be combined into a single function $F(Y, \Upsilon)$:

$$F(Y,\Upsilon) = \sum_{g=0}^{\infty} \Upsilon^g F^{(g)}(Y)$$

Couplings $F^{(g)}$ computed by the topological string (subtle) \longrightarrow BPS microstates counted by the topological string (subtle).

Attractor Mechanism and BPS Free Energy

BPS black holes subject to attractor mechanism: Ferrara, Kallosh, Strominger

at horizon
$$Y' \to Y'(p,q)$$
 , $\Upsilon \to -64$

Attractor equations (in the presence of Weyl²):

$$Y' - \bar{Y}' = i p'$$
, magnetic ,
 $F_I - \bar{F}_{\bar{I}} = i q_I$, electric , $F_I = \partial F(Y, \Upsilon) / \partial Y'$

Electro/magnetostatic potentials: $Y' + \bar{Y}^{\bar{I}} = \phi'$, $F_I + \bar{F}_{\bar{I}} = \chi_I$

BPS free energy = Hesse potential *H* of SG: $H = H(\phi, \chi)$

Question: relation of H to partition function of the topological string?

-

Charges (p', q_l) undergo electric/magnetic duality transformations:

$$egin{array}{rcl} Y' - ar{Y}^{ar{I}} &= i p' \ , & ext{magnetic} \ , \ F_I - ar{F}_{ar{I}} &= i q_I \ , & ext{electric} \ , & F_I = \partial F(Y, \Upsilon) / \partial Y' \end{array}$$

Thus, as $p \to q$, $q \to -p$, obtain $Y \to Y' = Y'(Y, \Upsilon)$.

Entanglement with the Weyl background!

Different from topological string approach: here, the transformation of the *Y* is not affected by the Weyl background.

Thus,
$$Y_{sugra} \neq Y_{top}!$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposal:

Reexpress the Hesse variables (ϕ, χ) in terms of new variables \tilde{Y} :

- The new variables \tilde{Y} transform precisely as the topological string variables. Natural to identify $\tilde{Y} = Y_{top}$.
- $\tilde{Y} = Y + \Delta Y(Y, \Upsilon)$, iteratively in Υ , complicated expressions.
- Attractor equations: $Y = Y(q, p) \rightarrow \tilde{Y} = \tilde{Y}(q, p)$

5/6

Conjecture:

the Hesse potential computes the topological free energy (TFE),

$$\mathcal{H}(\phi,\chi) \sim \operatorname{Re}\left(\sum_{g=0}^{\infty} \Upsilon^{g} F^{(g)}(\tilde{Y})\right)$$

Passes various checks.

Outlook:

Legendre of H is entropy. Relation with microstate counting?

$$\sum_{q,p} d(q,p) \, \mathrm{e}^{q \cdot \phi - p \cdot \chi} \sim \mathrm{e}^{\mathcal{H}(\phi,\chi)} \sim \mathrm{e}^{\mathrm{TFE}}$$

.