The Problem of a self gravitating scalar field with positive cosmological constant Annales Henri Poincaré, arXiv:1206.4153 [gr-qc]

João Lopes Costa (joint with Artur Alho and José Natário)

ISCTE – University Institute of Lisbon CAMGSD – IST/UTL

CENTRA, September 20, 2012

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

The "simplest", non-pathological matter model with dynamical degrees of freedom in spherical symmetry:

- Electro-vacuum has no dynamical degrees of freedom -Birkhoff's theorem completely determines its local structure.
- Dust is deemed pathological it is known to develop singularities even in the absence of gravity, i.e. in a fixed Minkowski background.

Cosmic No-Hair conjecture (Gibbons, Hawking and Moss)

Generic expanding solutions of Einstein's field equations with a positive cosmological constant approach the de Sitter solution asymptotically.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Cosmic No-Hair conjecture (Gibbons, Hawking and Moss)

Generic expanding solutions of Einstein's field equations with a positive cosmological constant approach the de Sitter solution asymptotically.

This conjecture as been verified for a variety of matter models and/or symmetry conditions:

Wald ('83), Friedrich ('86), Rendall and Tchapnda ('03), Rendall ('04), Anderson ('05), Ringström ('08), Rodnianski and Speck ('09), Beyer ('09), Valiente Kroon and Lübe ('11).

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

de Sitter space-time can be defined as the 4-dimensional hyperboloid

$$-x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 = H^{-2}$$

in 5-dimensional Minkowski space.

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

de Sitter space-time can be defined as the 4-dimensional hyperboloid

$$-x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 = H^{-2}$$

in 5-dimensional Minkowski space.

• It's a solution of the vacuum Einstein equations with positive cosmological constant $\Lambda = 3H^2$,

$$R_{\mu
u} = \Lambda g_{\mu
u}$$

 It's a space of maximal symmetry and of constant positive scalar curvature.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• There exist global coordinates $(\hat{t}, \chi, \theta, \varphi) \in \mathbb{R} \times \mathbb{S}^3$

$$ds^2 = -d\hat{t}^2 + H^{-2}\cosh(H\hat{t})\left(d\chi^2 + \sin^2\chi(d\theta^2 + \sin^2\theta d\varphi^2)\right)$$

• There exist local coordinates $(t, x, y, z) \in \mathbb{R}^4$

$$ds^2 = -dt^2 + e^{2Ht} \left(dx^2 + dy^2 + dz^2 \right)$$

This chart covers the region $x_0 + x_1 > 0$.

- The three FLRW possibilities can be realized on subsets of de Sitter.
- de Sitter with large ∧ can be used to model inflation periods.
- de Sitter with small A can be used to model "recent" period of accelerated expansion.

$$\mathbf{g} = -g(u,r)\tilde{g}(u,r)du^2 - 2g(u,r)dudr + r^2d\Omega^2$$

where $d\Omega^2$ is the round metric of the two-sphere, and

 $(u,r)\in [0,U) imes [0,R)$, $U,R\in \mathbb{R}^+\cup \{+\infty\}$.

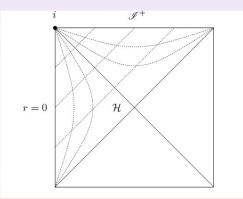
- radius function, defined by $r(p) := \sqrt{\text{Area}(\mathcal{O}_p)/4\pi}$ (where \mathcal{O}_p is the orbit through p)
- u = constant are the future null cones of points at r = 0

◆□ → ◆□ → ◆三 → ◆三 → ○ ◆ ○ へ ○

Bondi spherical symmetry de Sitter

Bondi coordinates (u, r, θ, φ) map the causal future of any point isometrically onto $([0, \infty) \times [0, \infty) \times S^2, g)$,

$$\mathbf{\mathring{g}}=-\left(1-rac{\Lambda}{3}r^{2}
ight)du^{2}-2dudr+r^{2}d\Omega^{2}$$



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Let $\Lambda > 0$ and $R > \sqrt{3/\Lambda}$. Given small enough data, $\phi_0 \in C^{k+1}([0, R]), k \ge 1$,

$$\sup_{0\leq r\leq R} |\phi_0(r)| + \sup_{0\leq r\leq R} |\partial_r \phi_0(r)| < \epsilon_0 \; ,$$

there exists a unique Bondi-spherically symmetric

$$\mathcal{C}^{k}([0,+\infty[\times[0,R]\times S^{2})$$

solution (M, \mathbf{g}, ϕ) of the Einstein-A-scalar field system

$$\mathbf{R}_{\mu\nu} = \kappa \,\partial_{\mu}\phi \,\partial_{\nu}\phi + \Lambda \mathbf{g}_{\mu\nu}$$

with the scalar field ϕ satisfying the characteristic condition

$$\phi_{|_{u=0}} = \phi_0 \; .$$

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Moreover, we have the following bound in terms of initial data:

$$|\phi| \leq \sup_{0 \leq r \leq R} |\partial_r \left(r \phi_0(r)
ight) |$$
.

Regarding the asymptotics, there exists $\phi \in \mathbb{R}$ such that

$$\left|\phi(u,r)-\underline{\phi}\right|\lesssim e^{-2Hu}\;,$$

and

$$|\mathbf{g}_{\mu
u} - \mathbf{\mathring{g}}_{\mu
u}| \lesssim e^{-2\mathcal{H}u} \; ,$$

where $H := \sqrt{\Lambda/3}$ and \mathring{g} is de Sitter's metric in Bondi coordinates The space-time is causally geodesically complete towards the future and has vanishing final Bondi mass.

◆□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A comment concerning regularity

Regularity at the center does not require

 $\partial_r \phi_0(0) = 0$

◆□ → ◆□ → ◆三 → ◆三 → ○ ◆ ○ ◆ ○ ◆

A comment concerning regularity

Regularity at the center does not require

 $\partial_r \phi_0(0) = 0$

It requires instead (recall fundamental confusion of calculus)

$$\partial_r \phi_0(0) = \partial_u \phi_0(0)$$

This follows from the wave equation!

A comment concerning regularity

Regularity at the center does not require

 $\partial_r \phi_0(0) = 0$

It requires instead (recall fundamental confusion of calculus)

 $\partial_r \phi_0(0) = \partial_u \phi_0(0)$

This follows from the wave equation!

 Instructive example: The solution of the spherically symmetric wave equation in Minkowski, with initial condition

$$\phi(\mathbf{r},\mathbf{r})=\mathbf{r}$$

is the smooth function

$$\phi(t,r)=t$$

Einstein-A-scalar field in Bondi coordinates

$${m R}_{\mu
u} = \kappa\,\partial_\mu\phi\,\partial_
u\phi + \Lambda {m g}_{\mu
u}$$

João Lopes Costa Einstein-scalar field with $\Lambda > 0$

◆□> ◆□> ◆臣> ◆臣> 「臣」 のへで

Einstein-A-scalar field in Bondi coordinates

$$R_{\mu
u} = \kappa \,\partial_{\mu}\phi \,\partial_{
u}\phi + \Lambda g_{\mu
u}$$

In Bondi-spherical symmetry its full content is encoded in:

$$\frac{2}{r}\frac{1}{g}\frac{\partial g}{\partial r} = \kappa \left(\partial_r \phi\right)^2 \tag{1}$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

E

$$\frac{\partial}{\partial r}(r\tilde{g}) = g\left(1 - \Lambda r^2\right) \tag{2}$$

and the wave equation for the scalar field,

$$\nabla^{\mu} T_{\mu\nu} = \mathbf{0} \Leftrightarrow \nabla^{\mu} \partial_{\mu} \phi = \mathbf{0} ,$$

which reads

$$\frac{1}{r} \left[\frac{\partial}{\partial u} - \frac{\tilde{g}}{2} \frac{\partial}{\partial r} \right] \frac{\partial}{\partial r} (r\phi) = \frac{1}{2} \left(\frac{\partial \tilde{g}}{\partial r} \right) \left(\frac{\partial \phi}{\partial r} \right)$$
(3)

Einstein-A-scalar field Christodoulou's framework

Consider the change of variable

$$h = \partial_r(r\phi)$$
.

◆□ > ◆母 > ◆臣 > ◆臣 > ● ● の < @

Consider the change of variable

$$h = \partial_r(r\phi)$$
.

In Minkowski wave equation becomes

$$Dh=0$$
 , $D=\partial_r-rac{1}{2}\partial_u$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Consider the change of variable

$$h = \partial_r(r\phi)$$
.

In Minkowski wave equation becomes

$$Dh=0$$
 , $D=\partial_r-rac{1}{2}\partial_u$

In de Sitter wave equation becomes

$$Dh = -\frac{\Lambda}{3}r(h-\bar{h})$$
, $D := \frac{\partial}{\partial u} - \frac{1}{2}\left(1 - \frac{\Lambda}{3}r^2\right)\frac{\partial}{\partial r}$

Einstein-A-scalar field Christodoulou's framework

The full content of Einstein's equations is encoded in

Dh = G
$$\left(h - ar{h}
ight)$$

where

$$D = \frac{\partial}{\partial u} - \frac{\tilde{g}}{2} \frac{\partial}{\partial r}$$
 and $G = \frac{1}{2r} \left[(g - \tilde{g}) - \Lambda g r^2 \right]$

◆□ → ◆□ → ◆三 → ◆三 → ● のへで

Einstein-A-scalar field Christodoulou's framework

The full content of Einstein's equations is encoded in

$$\mathsf{D} h = oldsymbol{G} \left(h - ar{h}
ight)$$

where

$$D = \frac{\partial}{\partial u} - \frac{\tilde{g}}{2} \frac{\partial}{\partial r}$$
 and $G = \frac{1}{2r} \left[(g - \tilde{g}) - \Lambda g r^2 \right]$

The scalar field is

$$\phi = \bar{h} := \frac{1}{r} \int_0^r h(u, s) ds$$

and, setting g(u, r = 0) = 1, the metric coefficients are given by

$$g(u,r) = \exp\left(rac{\kappa}{2}\int_0^r rac{\left(h-ar{h}
ight)^2}{s}ds
ight) \quad , \quad \widetilde{g}(u,r) = ar{g} - rac{\Lambda}{r}\int_0^r gs^2ds$$

The non-linear problem Norms and the most basic estimate

Let

$$\|h\|_{\mathcal{C}^0_{U,R}} := \sup_{u \leq U, r \leq R} |h(u,r)|$$

and define

$$\|h\|_{X_{U,R}} := \|h\|_{\mathcal{C}^0_{U,R}} + \|\partial_r h\|_{\mathcal{C}^0_{U,R}}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ↓ □ > ● ● ●

The non-linear problem Norms and the most basic estimate

Let

$$\|h\|_{\mathcal{C}^0_{U,R}} := \sup_{u \leq U, r \leq R} |h(u,r)|$$

and define

$$\|h\|_{X_{U,R}} := \|h\|_{\mathcal{C}^0_{U,R}} + \|\partial_r h\|_{\mathcal{C}^0_{U,R}}$$

If $\|h\|_X < \infty$

$$1 \leq g \leq e^{C \|h\|_X^2 R^2}$$

and if $||h||_X$ is small enough

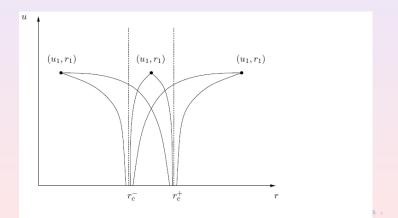
$$G \leq -Cr$$
 , $C = \frac{\Lambda}{3} + O(\|h\|_X)$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

The characteristics of the problem Incoming light rays

These satisfy the ordinary differential equation,

$$rac{dr}{du} = -rac{1}{2} ilde{g}(u,r).$$



Consider the sequence defined by

$$\begin{cases} D_n h_{n+1} - G_n h_{n+1} = -G_n \bar{h}_n \\ h_{n+1}(0, r) = h_0(r) \end{cases}$$

integrate along the characteristics to obtain

$$h_{n+1}(u_1,r_1) = h_0(r_n(0))e^{\int_0^{u_1} G_{n|_{\chi_n}} dv} - \int_0^{u_1} (G_n \bar{h}_n)_{|_{\chi_n}} e^{\int_u^{u_1} G_{n|_{\chi_n}} dv} du .$$

Goal: Show that $\|h_{n+1} - h_n\|_{X_{U,R}} \to 0$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

Iteration

Recall that: $G \leq -Cr$, for appropriately small $||h||_{X_{IIB}}$, then

. . .

. . .

• Solve local (in *u*) problem and obtain solution

 $h_1: [0, U_1] \times [0, R] \to \mathbb{R}$, $U_1 = U(\Lambda, R, \|h_0\|_{X_R}) > 0$

◆ロ → ◆屈 → ◆ 国 → ◆ 国 → クタ()

• Solve local (in *u*) problem and obtain solution

 $h_1: [0, U_1] \times [0, R] \to \mathbb{R}$, $U_1 = U(\Lambda, R, \|h_0\|_{X_R}) > 0$

•
$$\|h_1\|_{X_{U_1,R}} \leq (1+C^*)\|h_0\|_{X_R}$$

◆ロ → ◆屈 → ◆ 国 → ◆ 国 → クタ()

Solve local (in *u*) problem and obtain solution
 *h*₁ : [0, *U*₁] × [0, *R*] → ℝ , *U*₁ = *U*(∧, *R*, ||*h*₀||_{X_R}) > 0

•
$$\|h_1\|_{X_{U_1,R}} \le (1+C^*)\|h_0\|_{X_R}$$

• Solve problem with initial data $h_1(U_1, \cdot)$ to obtain solution

 $h_2: [0, U_2] \times [0, R] \to \mathbb{R}$, $U_2 = U(\Lambda, R, \|h_1(U_1, \cdot)\|_{X_R}) > 0$

◆□ > ◆母 > ◆臣 > ◆臣 > 臣 - ∽ Q @

- Solve local (in *u*) problem and obtain solution
 *h*₁ : [0, *U*₁] × [0, *R*] → ℝ , *U*₁ = *U*(∧, *R*, ||*h*₀||_{X_R}) > 0
- ||*h*₁||_{XU₁,R} ≤ (1 + C*)||*h*₀||_{XR}
 Solve problem with initial data *h*₁(*U*₁, ·) to obtain solution *h*₂ : [0, *U*₂]×[0, *R*] → ℝ , *U*₂ = *U*(Λ, *R*, ||*h*₁(*U*₁, ·)||_{XR}) > 0
- Extend original solution

$$h(u,r) := \begin{cases} h_1(u,r) &, & u \in [0, U_1] \\ h_2(u,r) &, & u \in [U_1, U_1 + U_2] \end{cases}.$$

- $\|h\|_{X_{U_1+U_2,R}} \le (1+C^*)\|h_0\|_{X_R}$
- We may extend the solution by the amount U_2 as before.

Exponential decay

Define

$$\mathcal{E}(u) := \|\partial_r h(u, \cdot)\|_{\mathcal{C}^0_B}.$$

The evolution equations and previous estimates imply that

$$\mathcal{E}(u_1) \leq \mathcal{E}(u_0) e^{-2C_1 \int_{u_0}^{u_1} r(s) ds} + C_2 \int_{u_0}^{u_1} \mathcal{E}(u) e^{-2C_1 \int_{u}^{u_1} r(v) dv} du ,$$

and by Gronwall's Lemma

$$\mathcal{E}(u_1) \lesssim \mathcal{E}(u_0) e^{-C_3 u_1}$$

with

$$C_3 = 2\sqrt{\frac{\Lambda}{3}} + O(\|h\|_X)$$

◆□ → ◆□ → ◆三 → ◆三 → ● のへで

For small data:

- Solve global in *r* problem.
- Generalize to non-linear scalar fields

For large data:

Formation of cosmological black holes?

$$g_{\mu
u} = (\text{Schwarzschild-de Sitter})_{\mu
u} + O(e^{-2Hu})$$

(四)
 (四)