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Outline

Motivation: to get some hints on the stability of a perturbed AdS
space (what happens if perturbation can not disperse?)

Model: Self-gravitating massless scalar field in 3 + 1 at spherical
symmetry, with Λ < 0
(Choptuik 1993: 3 + 1, Λ = 0)
(Pretorius, Choptuik 2000: 2 + 1, Λ < 0)

Results

Other models

Final remarks
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Anti-de Sitter spacetime in d + 1 dimensions

ds2 = −
(

1 +
r2

`2

)
dt2 +

dr2

1 + r2/`2
+ r2dΩ2

Sd−1 , 0 ≤ r , −∞ < t <∞

is a maximally symmetric solution of vacuum Einstein equations with a
negative cosmological constant Λ = −d(d − 1)/(2`2):

Rαβ −
1

2
R gαβ + Λ gαβ = 0 .

Set r/` = tan (ρ/`) to get

ds2 =
1(

cos ρ
`

)2

[
−dt2 + dρ2 + `2

(
sin

ρ

`

)2
dΩ2

Sd−1

]
,

−∞ < t < +∞, 0 ≤ ρ/` < π/2 .

Conformal infinity ρ/` = π/2 is the timelike surface I = R× Sd−1 with
the boundary metric ds2

I = −dt2 + dΩ2
Sd−1
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Maximally symmetric solutions of vacuum Einstein’s
equations and their stability

Rαβ −
1

2
R gαβ + Λ gαβ = 0 .

Λ = 0: Minkowski (trivial, yet most important)
asymptotically stable (Christodoulou&Klainerman 1993),

Λ > 0: de Sitter (important in cosmology - Nobel Prize 2011)
asymptotically stable (Friedrich 1986),

Λ < 0: anti- de Sitter (most popular on arXiv due to AdS/CFT)
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Is AdS stable?

A solution (of a dynamical system) is said to be stable if small
perturbations of it at t = 0 remain small for all later times

Linearly stable, asymptotic stability precluded (can not relax if
perturbed); stability - an open problem (first addressed by Anderson
2005).

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - is absent
in AdS because AdS is effectively bounded (for no flux boundary
conditions at I it acts as a perfect cavity)

Note that by positive energy theorems both Minkowski and AdS are
the unique ground states among asymptotically flat/AdS spacetimes
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Model

To make the problem feasible we start with spherical symmetry
(effectually 1 + 1 dimensional problem)

Spherically symmetric vacuum solutions are static (Birkhoff’s
theorem) ⇒ we need matter to generate dynamics

Simple matter model: massless scalar field φ in 3+1 dimensions

Gαβ + Λ gαβ = 8πG

(
∂αφ∂βφ−

1

2
gαβ∂µφ∂

µφ

)
, Λ = −3/`2 ,

gαβ∇α∇βφ = 0

In the corresponding asymptotically flat (Λ = 0) model Christodoulou
proved the weak cosmic censorship (dispersion for small data and
collapse to a black hole for large data) and Choptuik discovered
critical phenomena at the threshold for black hole formation

Remark: For even d ≥ 4 there is a way to bypass Birkhoff’s theorem
(cohomogeneity-two Bianchi IX ansatz, Bizoń, Chmaj, Schmidt 2005)
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Convenient parametrization of asymptotically AdS spacetimes

ds2 =
1(

cos ρ
`

)2

[
−Ae−2δdt2 + A−1dρ2 + `2

(
sin

ρ

`

)2
dΩ2

2

]
.

where A and δ are functions of (t, ρ).
Auxiliary variables Φ = φ′ and Π = A−1eδφ̇ (′ = ∂ρ, ˙ = ∂t)
Field equations (using units where 4πG = 1)

A′ = (1− A)
1 + 2

(
sin ρ

`

)2

`
(

cos ρ
`

)(
sin ρ

`

) − `(cos
ρ

`

)(
sin

ρ

`

)
A
(
Φ2 + P2

)
,

δ′ = −`
(

cos
ρ

`

)(
sin

ρ

`

) (
Φ2 + P2

)
,

Φ̇ =
(
Ae−δP

)′
, Ṗ =

1(
tan ρ

`

)2

[(
tan

ρ

`

)2
Ae−δΦ

]′
.

AdS space: φ ≡ 0, A ≡ 1, δ ≡ 0; now we want to solve the
initial-boundary value problem for this system for small perturbation
generated with some small, smooth initial data (φ, φ̇)|t=0
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Boundary conditions
We assume that initial data (φ, φ̇)|t=0 are smooth
Smoothness at the center implies that near ρ = 0

φ(t, ρ) = f0(t) +O(ρ2), δ(t, ρ) = O(ρ2), A(t, ρ) = 1 +O(ρ2)

Smoothness at spatial infinity and conservation of the total mass M
imply that near ρ = `π/2 (using ξ = π/2− ρ/`)

φ(t, ρ) = f∞(t) ξ3 +O
(
ξ5
)
, δ(t, ρ) = δ∞(t) +O

(
ξ6
)
,

A(t, ρ) = 1− 2(M/`)ξ3 +O
(
ξ6
)

Remark: There is no freedom in prescribing boundary data
Local well-posedness (Friedrich 1995, Holzegel&Smulevici 2011)
mass function and asymptotic mass:

m(t, ρ) =
` sin(ρ/`)

2

1− A(t, ρ)

cos3(ρ/`)

M = lim
ρ→π`/2

m(t, ρ) =
1

2

π`/2∫
0

(
AΦ2 + AΠ2

) (
tan

ρ

`

)2
dρ
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Reminder: asymptotically flat (Λ = 0) self-gravitating
scalar field

Christodoulou (1986-1993): dispersion for small data and collapse to
a black hole for large data (proof of the weak cosmic censorship)

Consider a family of initial data Φ(p) which interpolates between
dispersion and collapse (Choptuik 1993)

There exists a critical value of the parameter p∗ such that
I p < p∗ ⇒ dispersion
I p > p∗ ⇒ black hole

Universal behavior in the near-critical region |p − p∗| � 1
I mBH ∼ (p∗ − p)γ with universal exponent γ
I discretely self-similar attractor with universal period ∆

Critical solution (p = p∗) is a non-generic naked singularity
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Realplayer
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Critical behavior

Initial data: Φ(0, x) = 0 ,Π(0, x) = ε

[
exp

(
− ` tan(ρ/`)

σ

)2
]

We fix σ = 1/16 and vary ε.
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BH mass vs. amplitude

There is a decreasing sequence
of critical amplitudes εn for
which the evolution, after
making n reflections from the
AdS boundary, locally
asymptotes Choptuik’s
solution. In each small right
neighborhood of εn

mBH(ε) ∼ (ε− εn)γ

with γ ' 0.37. It seems that
limn→∞ εn = 0

Remark: The generic endstate of evolution is the Schwarzschild-AdS BH
of mass M (in accord with Holzegel&Smulevici 2011)
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The sequence of critical amplitudes (1)
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Does this sequence go to zero ?

Is it ∼ n−α dependence ?
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The sequence of critical amplitudes (2)
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massless scalar in 3+1 with ∆<0

numerical data
fit: critical amplitude = exp(3.73) * n**(-0.380)

a hint for the instability of AdS
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Key evidence for instability
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Key evidence for instability
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Onset of instability at time t = O(ε−2)
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Weakly nonlinear perturbations

From now ρ/` ≡ x

We seek an approximate solution starting from small initial data
(φ, φ̇)|t=0 = (εf (x), εg(x))

Perturbation series

φ = εφ1 + ε3φ3 + ...

δ = ε2δ2 + ε4δ4 + ...

1− A = ε2A2 + ε4A4 + ...

where (φ1, φ̇1)|t=0 = (f (x), g(x)) and (φj , φ̇j)|t=0 = (0, 0) for j > 1.

Inserting this expansion into the field equations and collecting terms
of the same order in ε, we obtain a hierarchy of linear equations
which can be solved order-by-order.
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First order

Linearized equation (Ishibashi&Wald 2004)

φ̈1 + Lφ1 = 0, L = − 1

tan2x
∂x
(
tan2x ∂x

)
The operator L is essentially self-adjoint on L2([0, π/2), tan2x dx).

Eigenvalues and eigenvectors of L are (j = 0, 1, . . . )

ω2
j = (3 + 2j)2, ej(x) = dj (cos x)3 F

(
−j , 3 + j

3/2

∣∣∣∣ (sin x)2

)
⇒ AdS is linearly stable

Linearized solution

φ1(t, x) =
∞∑
j=0

aj cos(ωj t + βj) ej(x)

where amplitudes aj and phases βj are determined by the initial data.
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Second order (back-reaction on the metric)

A′2 +
1 + 2 sin2x

sin x cos x
A2 = sin x cos x

(
φ̇2

1 + φ′1
2
)

δ′2 = − sin x cos x
(
φ̇2

1 + φ′1
2
)

so

A2(t, x) =
cos3x

sin x

x∫
0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
tan2y dy

δ2(t, x) = −
x∫

0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
sin y cos y dy

It follows that

M =
ε2

2

π/2∫
0

(
φ̇1(t, y)2 + φ′1(t, y)2

)
tan2y dy +O(ε4)
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Third order

φ̈3 + Lφ3 = S(φ1,A2, δ2) , (?)
where S := 2(A2 + δ2)φ̈1 + (Ȧ2 + δ̇2)φ̇1 + (A′2 + δ′2)φ′1.

Projecting Eq.(?) on the basis {ej} we obtain an infinite set of
decoupled forced harmonic oscillations for the generalized Fourier
coefficients cj(t) := (ej , φ3)

c̈j + ω2
j cj = Sj := (ej , S) and (cj , ċj)|t=0 = 0

Let Ω1 be a set of frequencies entering the linearized solution
φ1(t, x) =

∑
j [ωj ∈ Ω1] aj cos(ωj t + βj) ej(x).

A not-quite-straightforward calculation yields that for each j such
that ωj = |ω1 + ω2 − ω3|, ωi ∈ Ω1 there is a resonant term in Sj (i.e.,
a term proportional to cosωj t or sinωj t). Such term gives rise to a
secular term in cj , that is cj ∼ t sinωj t or cj ∼ t cosωj t. Some of
these resonances result in frequency shift and are harmless for
stability, but the others put stability in question!
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Example 1: single-mode data φ(0, x) = ε e0(x)

First order φ1(t, x) = cos(ω0t)e0(x), ω0 = 3 (ωj = 3 + 2j)

Third order φ3(t, x) =
∑∞

j=0 cj(t)ej(x), (cj , ċj)|t=0 = 0 and

c̈j + ω2
j cj = bj ,0 cos(ω0t) + bj ,3 cos(ω3t).

But b3,3 = 0 (!) and only j = 0 is resonant.
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phase modulation) which gives
φ ' ε cos(3t + 153

4π ε
2t) e0(x).

This suggests that there are
non-generic initial data which
may stay close to AdS solution
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Example 2: two-mode data φ(0, x) = ε (e0(x) + e1(x))
First order φ1(t, x) = cos(ω0t)e0(x) + cos(ω1t)e1(x), ω0 = 3, ω1 = 5
Third order φ3(t, x) =

∑∞
j=0 cj(t)ej(x), (cj , ċj)|t=0 = 0 and

c̈j+ω
2
j cj =

∑
k

[ωk ∈ Ω3]bj ,k cos(ωkt), where Ω3 = {|ω0,1±ω0,1±ω0,1|}

Here Ω3 = {1, 3, 5, 7, 9, 11, 13, 15}, but the the resonance (bj ,j 6= 0)
only if ωj ∈ {3, 5, 7}.
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the onset of exponential
instability.
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Turbulence: transfer of energy from low to high frequencies

Let Πj := (
√
AΠ, ej) and Φj := (

√
AΦ, e ′j ). Then

M =
1

2

π`/2∫
0

(
AΦ2 + AΠ2

)
(tan x)2 dx =

∞∑
j=0

Ej(t) ,

where Ej := Π2
j + ω−2

j Φ2
j can be interpreted as the j-mode energy.
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Conjectures

Our numerical and formal perturbative computations lead us to:

Conjecture 1

Anti-de Sitter space is unstable against the formation of a black hole
under arbitrarily small generic perturbations

Proof (and a precise formulation) is left as a challenge. Note that we do
not claim that all perturbed solutions end up as black holes.

Conjecture 2

There are non-generic initial data which may stay close to AdS solution;
Einstein-scalar-AdS equations may admit time-quasiperiodic solutions

Proof: KAM theory for PDEs?

We hope that these conjectures will help to put rigorous studies of
dynamics of asymptotically AdS spacetimes on the right track.
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Other models and generalizations

Qualitatively the same phenomenology for a self-gravitating scalar
field in d + 1 dimensions for any d ≥ 3 (Ja lmużna, Bizoń, R.)

Work in progress by Ja lmużna on 2 + 1 AdS collapse of a scalar field.
There is a mass gap for the formation of black holes
(Pretorius&Choptuik 2000) ⇒ for small perturbations turbulent
instability cannot result in black hole formation

Similar behavior for vacuum Einstein’s equation in 4 + 1 dimensions
under the cohomogeneity-two biaxial Bianchi IX ansatz (Bizoń, R.)

Related work in progress by Maliborski: Einstein-Yang-Mills AdS;
extremely rich model (2 lengths scales, plenty of static solutions)

Analogous weakly nonlinear perturbation analysis for 3 + 1 vacuum
Einstein’s equations (Dias, Horowitz, Santos)
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Cubic defocusing nonlinear wave equation on a torus
(Mach&Maliborski)
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Final remarks

Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
Colliander,Keel, Staffilani,Takaoka,Tao 2008, Carles,Faou 2010) and
our work shows that Einstein’s equations are not an exception.

For Einstein’s equations the transfer of energy to high frequencies
cannot proceed forever because concentration of energy on smaller
and smaller scales inevitably leads to the formation of a black hole.

We believe that the role of negative cosmological constant is purely
kinematical, that is the only role of Λ is to confine the evolution in an
effectively bounded domain.
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