

Contents

- General introduction
- Evidence for neutrino masses, status 2009
- Future questions/projects
- Neutrino Astrophysics
- Summary

The Standard Model

1955: m < 10 keV (< 2% of electron)

In the Standard Model neutrinos are massless particles

+ Higgs boson

3 Flavour mixing (PMNS)

Weak eigenstates not identical to mass eigenstates, analogue to CKM mixing in quark sector

11

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

$$= \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_{1}} & 0 \\ 0 & 0 & e^{i\alpha_{2}} \end{pmatrix}$$

Majorana neutrino: $U = U_{PMNS} diag(1, e^{i\alpha_1}, e^{i\alpha_2})$

Neutrino Oscillations

Neutrino mixing might lead to neutrino oscillations

2 unknown Parameters: $sin^2 2\theta$, Δm^2

If you know Δm^2 you can try to tune E and/or L to get the best sensitivity

No absolute neutrino mass measurement!

Neutrino sources

Nuclear power plants	\overline{V}_{e}
Accelerators	
Earth radioactivity	$\overline{\mathcal{V}}_{e}$
The atmosphere	
The Sun V_e	
Supernova	
The Big Bang	

Atmospheric v - Super-K

50 kt water Cerenkov detector

Atmospheric v - Super-K

Deficit in upward going muons

Check with Neutrino beams (Example: MINOS)

Baseline has to be some fraction of Earth diameter > 120 km (1%)

Major problem: Precise knowledge of neutrino energy spectrum at experiment

Long baseline results

K2K - experiment

Standard Solar Models

Assumption: Sun is producing energy by nuclear fusion

60 billion neutrinos pass the Earth per cm² every second

Detection principle

radiochemical (CC) $v_e + (A, Z) \rightarrow e^- + (A, Z + 1)$

+: low energy -: not real-time 1 SNU = 10^{-36} captures/target atom/s elastic electron-neutrino scattering (ES) $V_x + e^- \rightarrow V_x + e^-$ +: real time -: high energy reactions on deuterium (CC + NC) All experiments measure only 30-50% of predicted flux (status 2001)

Who is responsible?

Sun Core temperature $\phi(^8B) \propto T^{18}$ Chem. composition Magnetic field Cosmions Nuclear cross sections Astrophysicists: 5% change in core temperature is too much

All require neutrino mass

Oscillation-Solutions

If vacuum oscillations:

$$\Delta m^2 \approx \frac{E}{L} \approx \frac{1MeV}{10^1 m} = 10^{11} eV^2$$

If matter oscillations (MSW-Effect)

The Sudbury

Neutrino Observatory (SNO)

SNO – The smoking gun

1000 t heavy water (D_20)

$$\begin{array}{l} \mathbf{CC} \quad \mathbf{V}_{e} + \mathbf{d} \Rightarrow \mathbf{p} + \mathbf{p} + \mathbf{e}^{-} \\ \mathbf{NC} \quad \mathbf{V}_{x} + \mathbf{d} \Rightarrow \mathbf{p} + \mathbf{n} + \mathbf{V}_{x} \\ \end{array}$$

$$\frac{CC}{ES} = \frac{v_{e}}{v_{e} + 0.14(v_{\mu} + v_{\tau})} \quad \frac{CC}{NC} = \frac{v_{e}}{v_{e} + v_{\mu} + v_{\tau}}$$

 $\underbrace{\mathsf{ES}}_{V_x} + e^{-} \Rightarrow v_x + e^{-}$

See talk J. Maneira

Status 2009

Neutrinos are guilty!!!

KamLAND

Oscillation - evidences

depending on

$$\Delta m^2 = m_i^2 - m_j^2$$

Atmospheric neutrinos

 $\sin^2 2\theta_{23}$ = 1.00 , Δm^2 = 2.5 \times 10⁻³ eV²

Solar and reactor

 $\sin^2 2\theta_{12} = 0.81$, $\Delta m^2 = 7.6 \times 10^{-5} \text{ eV}^2$

Incredible progress in last 10-15 years !!!!

m = 5 tons, Gd-loaded liquid scintillator

Neutrino mass schemes and mixing

- almost degenerate neutrinos $m_1 \approx m_2 \approx m_3$
- hierarchical neutrino mass schemes

Mixing

$$V_{CKM} \sim egin{pmatrix} 1 & Small & Small \ Small & 1 & Small \ Small & Small & 1 \end{pmatrix}$$

$$U_{\text{MNSP}} \sim \begin{pmatrix} Big & Big & Small ? \\ Big & Big & Big \\ Big & Big & Big \end{pmatrix}$$

Why is quark and lepton mixing so different???

The twofold way....

 Precision determination of mixing matrix elements (PMNS), CP violation in lepton sector, Majorana phases?

(requires 3-flavour analysis of data)

Absolute neutrino mass measurement

CNGS

Same baseline as Fermilab – Soudan

Taking data

Beam energy optimised for detection

Reactor Neutrinos

$$P(\overline{\nu}_e \to \overline{\nu}_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E},$$

where $\Delta m_{ij}^2 = m_i^2 - m_j^2.$

Experiments look for non- $1/r^2$ behavior of antineutrino rate.

Oscillation maxima for E_v =3.6 MeV: $\Delta m^2_{12} \sim 8{\times}10^{-5}~\text{eV}^2 \quad \Longrightarrow \qquad L \sim 1.8~\text{km}$ $\Delta m_{13}^2 \sim 2.5 \times 10^{-3} \text{ eV}^2 \implies L \sim 60 \text{ km}$ 1.4 Δm_{atm}^2 Δm_{solar}^2 Рее 0.9 1.2 $\Delta m_{13}^2 = 2.5 \times 10^{-3} eV^2$ $\sin^2 2\theta_{13} = 0.04$ 0.8 1.0 Nobs/Nexp $E_{\nu} = 3.5 MeV$ 0.7 0.8 Savannah River 0.6 0.6 Bugey Rovno 0.5 Goesgen 0.4 Krasnoyark Palo Verde 0,4 0.2 Chooz KamLAND 0.3 0.0 10² 10^{3} 10^{+} 10⁵ 0.2 10^{1} Distance to Reactor (m) 103 104 105 10 Distance to reactor (m)

Double Chooz

+ Daya Bay, Reno It's all about systematic errors...

Knowledge of θ_{13} important as always sin² θ_{13} x e^{i δ}, if θ_{13} is too small no hope to see CP-violation

E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71,086201 (2008)

Beta decay

• (A,Z) \rightarrow (A,Z+1) + e⁻ + $\bar{\nu}_{e}$

Fit parameter endpoint

Mainz und Troitsk: $m_{ve} < 2.2 (2.05) \text{ eV} (95\% \text{ CL})$

Cryogenic bolometers as alternative approach under investigation

KATRIN- The next step

Aim: Sensitivity down to 0.2 eV

Take the long way home...

Double beta decay

- (A,Z) \rightarrow (A,Z+2) +2 e⁻ + $2\bar{\nu}_{e}$ $2\nu\beta\beta$
- $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$ $0\nu\beta\beta$

Unique process to measure the mass of the neutrino

Unque process to measure character of neutrino

Requires half-life measurements well beyond 10²⁰ yrs!!!!

The smaller the neutrino mass the longer the half-life

Example - Ge76

All ground state transitions are $0^+ \rightarrow 0^+$

There are only 35 candidates

Spectral shapes

$0\nu\beta\beta$: Peak at Q-value of nuclear transition

Sum energy spectrum of both electrons

The search for $0\nu\beta\beta$

or

Back of the envelope

 $T_{1/2} = In2 \cdot a \cdot N_A \cdot M \cdot t / N_{\beta\beta} \quad (\tau >> T) \quad (\text{ Background free})$ For half-life measurements of 10²⁶⁻²⁷ yrs

1 event/yr you need 10²⁶⁻²⁷ source atoms

This is about 1000 moles of isotope, implying 100 kg

Now you only can loose: nat. abundance, efficiency, background, ...

Heidelberg - Moscow

- The detectors are decaying!!
- 5 isotopical enriched Ge-detectors
- Peak at 2039 keV

Heidelberg - Moscow

H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586, 198 (2004), Mod.Phys.Lett.A21:1547-1566,2006

Current aims of double beta searches

- Check whether observed peak claimed in ⁷⁶Ge is true
- If yes, observe it with at least one other isotope to confirm that it is double beta decay
- If not, next milestone will be 50 meV suggested by oscillation results
- If still no observation, down to range 1-10 meV

Remember:
$$m_v \propto 4 \sqrt{\frac{\Delta EB}{Mt}}$$

Future projects, ideas

K. Zuber, Acta Polonica B 37, 1905 (2006)

	$\mathbf{Experiment}$	Isotope	Experimental approach
	CANDLES	48Ca	Several tons of CaF ₂ crystals in Liquid scintillator
	CARVEL	^{48}Ca	$100 \text{ kg} ^{48} \text{CaWO}_4$ crystal scintillators
COBRA CUORE		116 Cd, 130 Te	420 kg CdZnTe semiconductors
		$^{130}\mathrm{Te}$	750 kg TeO ₂ cryogenic bolometers CUORICINO (til 06/08)
	DCBA ¹⁵⁰ Nd 20 kg Nd layers between tracking chambers EXO ¹³⁶ Xe 1 ton Xe TPC (gas or liquid)		20 kg Nd layers between tracking chambers
			1 ton Xe TPC (gas or liquid)
	${ m GERDA}$ $^{76}{ m Ge}$ $\sim 40~{ m kg}~{ m Ge}~{ m diodes}~{ m in}~{ m LN}_2,$ expand to larger mass		~ 40 kg Ge diodes in LN ₂ , expand to larger masses
GSO MAJORANA		^{160}Gd	$2t Gd_2SiO_3$:Ce crystal scintillator in liquid scintillator
		76 Ge	$\sim 180\mathrm{kg}$ Ge diodes, expand to larger masses
→J. Maneira SNO+ SuperNEMO	^{100}Mo	several tons of Mo sheets between scint.	
	SNO+	150 Nd	1000 t of Nd-loaded liquid scint.
	SuperNEMO	82 Se	100 kg of Se foils between TPCs running as NEMO-3
	Xe	¹³⁶ Xe	1.56 t of Xe in liquid scint.
	XMASS	136 Xe	10 t of liquid Xe
		-	

small scale ones will expand, very likely not a complete list...

GERDA-Principal Setup

Status GERDA

K. Zuber, Phys. Lett. B 519,1 (2001) COBRA

Use large amount of CdZnTe Semiconductor Detectors

Semiconductor Tracker, Solid State TPC

Particles

Alphas

Betas

Muons

Events obtained with a 55 μm pixel detector, 256x256 pixels

Neutrino Astrophysics

Supernova 1987A

Cosmic accelerators - Detection Principle

Neutrino Telescopes

Ice Cerenkov at the South Pole AMANDA/ICECUBE

Other techniques (radio, acoustic, Auger,...) are explored as well

Neutrino masses and cosmology

There is a 1.95 K relic neutrino background... Still to be detected....

$$n_{v} = \frac{6\varsigma(3)}{11\pi^{2}} T_{CMB}^{3} \approx 112 cm^{-3}$$

$$\Omega_{v}h^{2} = \frac{m_{v,tot}}{94eV}$$

Neutrino masses and cosmology

A unique cosmological bound on m, DOES NOT exist!

Cosmology is discovering systematic errors...

S. Pastor, EPS HEP2005, Lisbon

Summary

- Neutrino physics is an essential part of particle and particle astrophysics
- We know $\Theta_{12}\approx 34^\circ~~\Theta_{23}\approx 45^\circ$ and $\Theta_{13}<12^\circ~$. Furthermore $m_{_V}{<}2.2~eV$
- Two major directions: Determine absolute neutrino mass, determine PMNS mixing matrix elements (CPviolation)
- Solar neutrino problem has been solved, full information available only if full spectrum (including pp-neutrinos) is measured in real-time
- We are still awaiting good ideas how to detect the relic 1.95K neutrino background
- Neutrino physics is a very lively and exciting field of nuclear-, astro- and particle physics

Always expect the unexpected

