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@ The non-linear stability of the domain of outer communication of the Kerr
solution. Requires a definition of vacuum initial data close to Kerr initial data.

Both definitions can be encompassed within the notion of non-Kerrness.

non-Kerrness = non-negative scalar characterising vacuum initial data close to
Kerr initial data.
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M =Kerr exterior (a<M)
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derivatives (with respect to the connection compatible with h;;) such that
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Theorem

Let (X, h;j, K;;) be a vacuum initial data set fulfilling certain regularity conditions
to be detailed later. Then we can construct a non-negative scalar L(h;j, K;;) > 0
at each point of ¥ defined exclusively in terms of h;;, K,; and their covariant

derivatives (with respect to the connection compatible with h;;) such that

£(hij,Kij) =0<= (Z,hij,Kij) are Kerr initial data.

We follow the terminology laid by previous authors and call the scalar £(h;;, K;;)
the non-Kerrness.



A local invariant characterisation of the Kerr solution

Theorem (Ferrando & Saez (2009))
A solution (M, g,..,) of the vacuum Einstein field equations is locally isometric to

the Kerr spacetime if and only if the following conditions hold in an open set of
M
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All the conditions in the theorem are written in terms of concomitants of the Weyl
tensor.
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o ldea: FS conditions are made of concomitans of the Weyl tensor. Compute
their orthogonal splitting and find their projection to the initial data
hypersurface X. This yields necessary conditions which a Kerr initial data set
must satisfy.

o Take for instance the Weyl tensor C),,»

Cunre = 2 (lupnEoly — nEoly — "aBojr” = niuBujre” )

o Weyl tensor electric & magnetic parts

_ by _ A
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@ These can be related to the vacuum initial data h;;, K;;

Eij =rij + KK;j — KK, |
ki
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Killing initial data

To find sufficient conditions fulfilled by a Kerr initial data set we use the Killing
vector £ to propagate the necessary conditions found in the previous step. To
achieve this we need to find conditions for the existence of the Killing vector £*.

Theorem (Killing initial data (KID))

The necessary and sufficient condition for there to exist a Killing vector field £ in
the data development of a vacuum initial data set (X, h;;, K;;) is that a pair
(Y,Y;) defined on ¥ fulfills

DYy — YKy =0,
DiD;Y — Ly Kij = Y (ri; + KK;; — 2K KY).




Construction of a local non-Kerrness

Set of necessary
conditions for Kerr initial
data. Only depend on

Orthogonal
Splitting
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Main Theorem

Let (X, h;j, K;;) be a vacuum initial data set and assume that on ¥ the data
fulfills the properties

o>0,
K = (¢(B)* +j(B)i(B)" + t(B)i;t(B)”)(A* + B*) > 0,

Under these conditions define the following non-negative scalar (all the variables
are defined in terms of h;j, K;;)

(v(4) +(B))* + ((A)i +j(B):)G(A)" +i(B)")
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The scalar L(h;j, K;;) vanish if and only if (¥, hi;, K;;) are Kerr initial data.
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@ The non-Kerrness presented in this work is dimensionless but one might
explore other definitions which have dimensions.

@ The propagation problem: since L(h;;, K;;) only depend on the initial data
hij, K;; one can obtain the evolution of L(h;;, K;;) under the Einstein's
vacuum equations.

@ It has been always assumed that > is space-like. Generalise the analysis for X
of arbitrary causal character.
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