Warped AdS₃ Black Holes: Are They Classically Stable?

Hugo Ferreira

based on Phys. Rev. D 87, 124013 (2013)

CENTRA, Instituto Superior Técnico, Universidade (Técnica) de Lisboa

UNITED KINGDOM · CHINA · MALAYSIA

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

12 September 2013

1 Introduction

- 2 Warped AdS₃ black holes
- 3 Existence of classical superradiance
- 4 Classical stability of warped AdS₃ black holes
- 5 QFT on warped AdS₃ black holes
- 6 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1 Introduction

- 2 Warped AdS₃ black holes
- 3 Existence of classical superradiance
- 4 Classical stability of warped AdS₃ black holes
- 5 QFT on warped AdS₃ black holes
- 6 Conclusions

AIM: study QFT in black hole spacetimes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

AIM: study QFT in black hole spacetimes

Have been mostly restricted to:

- asymptotically flat spacetimes (astrophysics)
- asymptotically AdS spacetimes (AdS/CFT correspondence)
- static, highly symmetric spacetimes (fewer variables, no superradiance)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

AIM: study QFT in black hole spacetimes

Have been mostly restricted to:

- asymptotically flat spacetimes (astrophysics)
- asymptotically AdS spacetimes (AdS/CFT correspondence)
- static, highly symmetric spacetimes (fewer variables, no superradiance)

Rotating spacetimes significantly more difficult!

Frolov and Thorne (1989) Kay and Wald (1991) Ottewill and Winstanley (2000) Ottewill and Duffy (2008)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Topologically Massive Gravity

Simplification: consider (2+1)-dimensional spacetimes

Einstein gravity in 2+1 dimensions: no propagating degrees of freedom!

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Topologically Massive Gravity

Simplification: consider (2+1)-dimensional spacetimes

- Einstein gravity in 2+1 dimensions: no propagating degrees of freedom!
- Topologically Massive Gravity (TMG):

$$S = S_{\mathsf{E-H}} + S_{\mathsf{C-S}} \,,$$

with:

$$\begin{split} S_{\text{E-H}} &= \frac{1}{16\pi G} \int d^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right) \,, \\ S_{\text{C-S}} &= \frac{\ell}{96\pi G\nu} \int d^3 x \sqrt{-g} \, \epsilon^{\lambda\mu\nu} \, \Gamma^{\rho}_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}_{\rho\nu} + \frac{2}{3} \Gamma^{\sigma}_{\mu\tau} \Gamma^{\tau}_{\nu\rho} \right) \,. \end{split}$$

Deser, Jackiw, Templeton (1982)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Topologically Massive Gravity

Simplification: consider (2+1)-dimensional spacetimes

- Einstein gravity in 2+1 dimensions: no propagating degrees of freedom!
- Topologically Massive Gravity (TMG):

$$S = S_{\mathsf{E-H}} + S_{\mathsf{C-S}} \,,$$

with:

$$\begin{split} S_{\text{E-H}} &= \frac{1}{16\pi G} \int d^3 x \sqrt{-g} \left(R + \frac{2}{\ell^2} \right) \,, \\ S_{\text{C-S}} &= \frac{\ell}{96\pi G\nu} \int d^3 x \sqrt{-g} \, \epsilon^{\lambda\mu\nu} \, \Gamma^{\rho}_{\lambda\sigma} \left(\partial_{\mu} \Gamma^{\sigma}_{\rho\nu} + \frac{2}{3} \Gamma^{\sigma}_{\mu\tau} \Gamma^{\tau}_{\nu\rho} \right) \,. \end{split}$$

Deser, Jackiw, Templeton (1982)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

- Massive propagating degree of freedom.
- Third-order derivative theory.
- GR solutions ⊂ TMG solutions (eg AdS, BTZ black hole)

1 Introduction

2 Warped AdS₃ black holes

3 Existence of classical superradiance

4 Classical stability of warped AdS₃ black holes

5 QFT on warped AdS₃ black holes

6 Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hopf fibration of AdS₃:

 $\mathsf{S^1} \text{ (fibre)} \hookrightarrow \mathsf{AdS}_3 \to \mathsf{AdS}_2 \text{ (base)}$

 $ds^{2} = \frac{1}{4} \left[-\cosh^{2} \sigma \, d\tau^{2} + d\sigma^{2} + (du + \sinh \rho \, d\tau)^{2} \right]$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The Hopf fibres are the flow lines of a spacelike congruence of a Killing vector field of AdS_3 .

Bengtsson, Sandin (2005)

Hopf fibration of WAdS₃

■ Spacelike warped AdS₃: spacelike fibres are scaled relative to the base AdS₂:

$$ds^{2} = \frac{1}{4} \left[-\cosh^{2}\sigma \, d\tau^{2} + d\sigma^{2} + \lambda^{2} (du + \sinh \sigma \, d\tau)^{2} \right]$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

If $\lambda^2 > 1$ this is the spacelike stretched AdS₃ metric.

Hopf fibration of WAdS₃

■ Spacelike warped AdS₃: spacelike fibres are scaled relative to the base AdS₂:

$$ds^{2} = \frac{1}{4} \left[-\cosh^{2}\sigma \, d\tau^{2} + d\sigma^{2} + \lambda^{2} (du + \sinh \sigma \, d\tau)^{2} \right]$$

If $\lambda^2 > 1$ this is the spacelike stretched AdS₃ metric.

In the context of 2+1 gravity:

$$ds^{2} = \frac{\ell^{2}}{\nu^{2} + 3} \left[-\cosh^{2}\sigma \, d\tau^{2} + d\sigma^{2} + \frac{4\nu^{2}}{\nu^{2} + 3} (du + \sinh\sigma \, d\tau)^{2} \right]$$

is a new solution of TMG but not of Einstein gravity.

Anninos, Li, Padi, Song, Strominger (2008)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Hopf fibration of WAdS₃

■ Spacelike warped AdS₃: spacelike fibres are scaled relative to the base AdS₂:

$$ds^{2} = \frac{1}{4} \left[-\cosh^{2} \sigma \, d\tau^{2} + d\sigma^{2} + \lambda^{2} (du + \sinh \sigma \, d\tau)^{2} \right]$$

If $\lambda^2 > 1$ this is the spacelike stretched AdS₃ metric.

In the context of 2+1 gravity:

$$ds^{2} = \frac{\ell^{2}}{\nu^{2} + 3} \left[-\cosh^{2}\sigma \, d\tau^{2} + d\sigma^{2} + \frac{4\nu^{2}}{\nu^{2} + 3} (du + \sinh\sigma \, d\tau)^{2} \right]$$

is a new solution of TMG but not of Einstein gravity.

Anninos, Li, Padi, Song, Strominger (2008)

They are thought to be **perturbatively stable** vacua of TMG (with suitable boundary conditions) in the range $\nu > 1$.

Anninos, Esole, Guica (2009)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Why study warped AdS_3 solutions?

It is conjectured that TMG with suitable warped AdS₃ boundary conditions is dual to a 2D CFT with central charges:

$$c_L = rac{4
u\ell}{G(
u^2 + 3)}, \qquad c_R = rac{(5
u^2 + 3)\ell}{G
u(
u^2 + 3)}$$

Anninos, Li, Padi, Song, Strominger (2008)

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Why study warped AdS₃ solutions?

It is conjectured that TMG with suitable warped AdS₃ boundary conditions is dual to a 2D CFT with central charges:

$$c_L = rac{4
u\ell}{G(
u^2 + 3)}, \qquad c_R = rac{(5
u^2 + 3)\ell}{G
u(
u^2 + 3)}$$

Anninos, Li, Padi, Song, Strominger (2008)

 At fixed polar angle θ, the near-horizon geometry of 4D extreme Kerr can be described in terms of 3D warped AdS₃ geometries.

Bardeen, Horowitz (1999)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

It is conjectured that TMG with suitable warped AdS₃ boundary conditions is dual to a 2D CFT with central charges:

$$c_L = rac{4
u\ell}{G(
u^2 + 3)}, \qquad c_R = rac{(5
u^2 + 3)\ell}{G
u(
u^2 + 3)}.$$

Anninos, Li, Padi, Song, Strominger (2008)

 At fixed polar angle θ, the near-horizon geometry of 4D extreme Kerr can be described in terms of 3D warped AdS₃ geometries.

Bardeen, Horowitz (1999)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Kerr/CFT correspondence.

Guica, Hartman, Song, Strominger (2008)

It is conjectured that TMG with suitable warped AdS₃ boundary conditions is dual to a 2D CFT with central charges:

$$c_L = rac{4
u\ell}{G(
u^2 + 3)}, \qquad c_R = rac{(5
u^2 + 3)\ell}{G
u(
u^2 + 3)}$$

Anninos, Li, Padi, Song, Strominger (2008)

 At fixed polar angle θ, the near-horizon geometry of 4D extreme Kerr can be described in terms of 3D warped AdS₃ geometries.

Bardeen, Horowitz (1999)

ション ふゆ アメリア メリア しょうくの

Kerr/CFT correspondence.

Guica, Hartman, Song, Strominger (2008)

 Causal structure of warped AdS₃ black holes resembles that of asymptotically flat black holes in 3+1 dimensions. Any spacetime with constant $\Lambda < 0$ must arise from identifications of points in AdS, through a discrete subgroup of its symmetry group O(2,2).

From AdS_3 to BTZ

- Any spacetime with constant $\Lambda < 0$ must arise from identifications of points in AdS, through a discrete subgroup of its symmetry group O(2,2).
- To construct BTZ, the discrete subgroup G is generated by a Killing vector ξ :

$$G = \{\exp(t\xi) : t \in 2\pi\mathbb{Z}\}$$

The identification of points is then:

$$x \sim \exp(t\xi)x$$
, $t \in 2\pi\mathbb{Z}$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

From AdS_3 to BTZ

- Any spacetime with constant $\Lambda < 0$ must arise from identifications of points in AdS, through a discrete subgroup of its symmetry group O(2,2).
- To construct BTZ, the discrete subgroup G is generated by a Killing vector ξ :

$$G = \{\exp(t\xi) : t \in 2\pi\mathbb{Z}\}$$

The identification of points is then:

$$x \sim \exp(t\xi)x$$
, $t \in 2\pi\mathbb{Z}$

• ξ can be timelike, null and or spacelike.

$$\mathsf{BTZ} := \{ x \in \mathsf{AdS}_3 / \sim : \xi^2(x) > 0 \}$$

BTZ is geodesically incomplete:

$$\partial \mathsf{BTZ} = \{x \in \mathsf{AdS}_3 / \sim : \xi^2(x) = 0\}$$

corresponds to a singularity in the causal structure.

Regions where $\xi^2(x) < 0$ would have closed timelike curves.

Banados, Teitelboim, Zanelli (1993)

Spacelike stretched black hole:

$$ds^{2} = dt^{2} + \frac{\ell^{2} dr^{2}}{4R^{2}(r)N^{2}(r)} + 2R^{2}(r)N^{\theta}(r)dtd\theta + R^{2}(r)d\theta^{2}$$

$$R^{2}(r) = \frac{r}{4} \Big[3(\nu^{2} - 1)r + (\nu^{2} + 3)(r_{+} + r_{-}) - 4\nu\sqrt{r_{+}r_{-}(\nu^{2} + 3)} \Big]$$
$$N^{2}(r) = \frac{(\nu^{2} + 3)(r - r_{+})(r - r_{-})}{4R(r)^{2}}$$
$$N^{\theta}(r) = \frac{2\nu r - \sqrt{r_{+}r_{-}(\nu^{2} + 3)}}{2R(r)^{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Anninos, Li, Padi, Song, Strominger (2008)

- $\nu>1$ is the warp factor of the spacetime.
- $\nu \rightarrow 1$ recovers the BTZ black hole.

Spacelike stretched black hole:

$$ds^{2} = dt^{2} + \frac{\ell^{2} dr^{2}}{4R^{2}(r)N^{2}(r)} + 2R^{2}(r)N^{\theta}(r)dtd\theta + R^{2}(r)d\theta^{2}$$

• $(\partial_t)^2 > 0 \implies$ no "static observers" (following orbits of ∂_t) \implies no stationary limit surface

Spacelike stretched black hole:

$$ds^{2} = dt^{2} + \frac{\ell^{2} dr^{2}}{4R^{2}(r)N^{2}(r)} + 2R^{2}(r)N^{\theta}(r)dtd\theta + R^{2}(r)d\theta^{2}$$

• $(\partial_t)^2 > 0 \implies$ no "static observers" (following orbits of ∂_t) \implies no stationary limit surface

Consider
$$\xi(r) = \partial_t + \Omega(r)\partial_{\theta}$$
, with $\Omega_-(r) < \Omega(r) < \Omega_+(r)$ and

$$\Omega_{\pm}(r) = -\frac{2}{2\nu r - \sqrt{r_{+}r_{-}(\nu^{2}+3)} \pm \sqrt{(r-r_{+})(r-r_{-})(\nu^{2}+3)}}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 \exists "stationary observers" (following orbits of $\xi(r)$)

Spacelike stretched black hole:

$$ds^{2} = dt^{2} + \frac{\ell^{2} dr^{2}}{4R^{2}(r)N^{2}(r)} + 2R^{2}(r)N^{\theta}(r)dtd\theta + R^{2}(r)d\theta^{2}$$

• $(\partial_t)^2 > 0 \implies$ no "static observers" (following orbits of ∂_t) \implies no stationary limit surface

Consider
$$\xi(r) = \partial_t + \Omega(r)\partial_\theta$$
, with $\Omega_-(r) < \Omega(r) < \Omega_+(r)$ and

$$\Omega_{\pm}(r) = -\frac{2}{2\nu r - \sqrt{r_{+}r_{-}(\nu^{2}+3)} \pm \sqrt{(r-r_{+})(r-r_{-})(\nu^{2}+3)}}$$

 \exists "stationary observers" (following orbits of $\xi(r)$)

• $\Omega(r)
ightarrow \Omega_{\mathcal{H}}$ when $r
ightarrow r_+$, with

$$\Omega_{\mathcal{H}} = -rac{2}{2
u r_{+} - \sqrt{r_{+}r_{-}(
u^{2} + 3)}}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

 $\Omega_{\mathcal{H}}$ is the angular velocity of the event horizon

Spacelike stretched black hole:

$$ds^{2} = dt^{2} + rac{\ell^{2} dr^{2}}{4R^{2}(r)N^{2}(r)} + 2R^{2}(r)N^{\theta}(r)dtd\theta + R^{2}(r)d\theta^{2}$$

• $\chi = \partial_t + \Omega_H \partial_\theta$ is the Killing vector field that generates the horizon It is null at $4u^2 r_t = (u^2 + 3)r_t$

$$r = r_+$$
 and $r = r_C = \frac{4\nu^2 r_+ - (\nu^2 + 3)r_-}{3(\nu^2 - 1)}$

∃ **speed of light surface** (beyond an observer cannot corotate with the horizon)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Spacelike stretched black hole:

$$ds^{2} = dt^{2} + \frac{\ell^{2} dr^{2}}{4R^{2}(r)N^{2}(r)} + 2R^{2}(r)N^{\theta}(r)dtd\theta + R^{2}(r)d\theta^{2}$$

• $\chi = \partial_t + \Omega_H \partial_\theta$ is the Killing vector field that generates the horizon It is null at $4\nu^2 r_+ - (\nu^2 + 3)r_-$

$$r = r_+$$
 and $r = r_C = \frac{4\nu^2 r_+ - (\nu^2 + 3)r_-}{3(\nu^2 - 1)}$

∃ speed of light surface (beyond an observer cannot corotate with the horizon)

Asymptotic form of the metric at $r \to \infty$:

$$ds^{2} = dt^{2} + \frac{\ell^{2} dr^{2}}{(\nu^{2} + 3)r^{2}} + 2\nu r \, dt d\theta + \frac{3(\nu^{2} - 1)r^{2}}{4} d\theta^{2}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

It is locally the metric of the spacelike stretched AdS₃

Causal structure of warped AdS₃ black holes

 $r_0 < r_- < r_+$

- Not asymptotically AdS₃!
- Similar to asymptotically flat black holes!
- Arena to obtain valuable insights for difficult problems with the Kerr black hole!

Jugeau, Moutsopoulos, Ritter (2010)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

1 Introduction

2 Warped AdS₃ black holes

3 Existence of classical superradiance

4 Classical stability of warped AdS₃ black holes

5 QFT on warped AdS₃ black holes

6 Conclusions

Scalar field Φ on the background of a spacelike stretched black hole:

$$\left(\nabla^2 - m^2\right)\Phi(t, r, \theta) = 0$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Scalar field Φ on the background of a spacelike stretched black hole:

$$\left(\nabla^2 - m^2\right)\Phi(t, r, \theta) = 0$$

Exact mode solutions:

$$\Phi_{\omega k}(t,r, heta) \sim e^{-i\omega t + ik heta} z^{lpha} (1-z)^{eta} F(a,b,c;z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$z=\frac{r-r_+}{r-r_-}$$

 $\alpha,~\beta,~{\it a},~{\it b},~{\it c}$ functions of ω and ${\it k}$

F(a, b, c; z) hypergeometric function

Let

$$\Phi(t,r,\theta) = e^{-i\omega t + ik\theta} \phi_{\omega k}(r), \qquad \phi_{\omega k}(r) \equiv R(r)^{-1/2} \varphi_{\omega k}(r)$$

Radial equation:

$$\left(\frac{d^2}{dr_*^2}+(\omega^2-V_{\omega k}(r))\right)\varphi_{\omega k}(r)=0\,,$$

 $V_{\omega k}(r)$ is the effective potential felt by the scalar field

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Asymptotic solutions

• Near-horizon limit
$$(r_* \rightarrow -\infty)$$
:

$$\varphi_{\omega k}(r_*) = A_{\omega k} e^{i\tilde{\omega}r_*} + B_{\omega k} e^{-i\tilde{\omega}r_*}$$

where

$$ilde{\omega}\equiv\omega-k\Omega_{\mathcal{H}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Asymptotic solutions

Near-horizon limit
$$(r_* \rightarrow -\infty)$$
:

$$\varphi_{\omega k}(r_*) = A_{\omega k} e^{i\tilde{\omega}r_*} + B_{\omega k} e^{-i\tilde{\omega}r_*}$$

where

$$ilde{\omega}\equiv\omega-k\Omega_{\mathcal{H}}$$

• Near-infinity limit
$$(r_* \to +\infty)$$
:

$$arphi_{\omega k}(r_*) = C_{\omega k} \, e^{i \hat{\omega} r_*} + D_{\omega k} \, e^{-i \hat{\omega} r_*}$$

where

$$\begin{split} \hat{\omega} &\equiv \begin{cases} \sqrt{\omega^2 - \omega_m^2}, & \omega > \omega_m \ge 0\\ -\sqrt{\omega^2 - \omega_m^2}, & \omega < -\omega_m \le 0 \end{cases} \\ \omega_m &\equiv \frac{1}{2} \frac{\nu^2 + 3}{\sqrt{3(\nu^2 - 1)}} \sqrt{1 + \frac{4m^2}{\nu^2 + 3}} \end{split}$$

Modified "Breitenlohner-Freedman bound": $m^2 \ge -\frac{\nu^2+3}{4}$

(ロ)、

Basis modes and superradiance

up modes

"in" modes:

$$\varphi_{\omega k}^{\mathsf{in}}(r_*) = \begin{cases} B_{\omega k}^{\mathsf{in}} e^{-i\tilde{\omega}r_*}, & r_* \to -\infty \\ e^{-i\tilde{\omega}r_*} + C_{\omega k}^{\mathsf{in}} e^{i\tilde{\omega}r_*}, & r_* \to +\infty \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Basis modes and superradiance

up modes

"in" modes:

$$\varphi_{\omega k}^{\mathsf{in}}(r_*) = \begin{cases} B_{\omega k}^{\mathsf{in}} e^{-i\tilde{\omega}r_*}, & r_* \to -\infty \\ e^{-i\hat{\omega}r_*} + C_{\omega k}^{\mathsf{in}} e^{i\hat{\omega}r_*}, & r_* \to +\infty \end{cases}$$

$$\varphi_{\omega k}^{up}(r_*) = \begin{cases} e^{i\tilde{\omega}r_*} + B_{\omega k}^{up} e^{-i\tilde{\omega}r_*}, & r_* \to -\infty \\ C_{\omega k}^{up} e^{i\tilde{\omega}r_*}, & r_* \to +\infty \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

in modes

up modes

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

From Wronskian relations:

$$ilde{\omega} |B_{\omega k}^{\mathsf{in}}|^2 = \hat{\omega} \left(1 - |C_{\omega k}^{\mathsf{in}}|^2\right), \qquad ilde{\omega} \left(1 - |B_{\omega k}^{\mathsf{up}}|^2\right) = \hat{\omega} |C_{\omega k}^{\mathsf{up}}|^2$$

in modes

up modes

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

From Wronskian relations:

$$ilde{\omega} |B_{\omega k}^{\mathsf{in}}|^2 = \hat{\omega} \left(1 - |C_{\omega k}^{\mathsf{in}}|^2\right), \qquad \quad \tilde{\omega} \left(1 - |B_{\omega k}^{\mathsf{up}}|^2\right) = \hat{\omega} |C_{\omega k}^{\mathsf{up}}|^2$$

Superradiance when:

$$|C_{\omega k}^{\rm in}|^2 > 1 \Longleftrightarrow \tilde{\omega} \hat{\omega} < 0 \,, \qquad |B_{\omega k}^{\rm up}|^2 > 1 \Longleftrightarrow \tilde{\omega} \hat{\omega} < 0$$

in modes

up modes

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- in modes: LNRO at infinity $\Longrightarrow \omega > 0$ (i.e. $\hat{\omega} > 0$) \exists superradiance iff $\tilde{\omega} < 0$, i.e. $\omega_m < \omega < k\Omega_H$
- up modes: LNRO at horizon $\implies \tilde{\omega} > 0$ ∃ superradiance iff $\hat{\omega} < 0$, i.e. $\omega < -\omega_m$

Whatever the choice of positive frequency classical superradiance is always present (when physically motivated boundary conditions are imposed)!

・ロト ・聞 ト ・ ヨト ・ ヨト …

Э

Whatever the choice of positive frequency classical superradiance is always present (when physically motivated boundary conditions are imposed)!

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

This is:

- similar to the Kerr spacetime;
- in contrast with the BTZ and Kerr-AdS spacetimes.

1 Introduction

- 2 Warped AdS₃ black holes
- 3 Existence of classical superradiance
- 4 Classical stability of warped AdS₃ black holes
- 5 QFT on warped AdS₃ black holes

6 Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の�?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Boundary conditions:

- Ingoing modes at the event horizon;
- Outgoing modes at infinity.

Boundary conditions:

- Ingoing modes at the event horizon;
- Outgoing modes at infinity.
- \implies **Discrete** set of **complex** eigenfrequencies $\{\omega_n\}$

$$\Phi_{\boldsymbol{n}} \sim e^{-i\omega_{\boldsymbol{n}}t} = e^{-i\operatorname{Re}(\omega_{\boldsymbol{n}})t + \operatorname{Im}(\omega_{\boldsymbol{n}})t}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Boundary conditions:

- Ingoing modes at the event horizon;
- Outgoing modes at infinity.
- \implies **Discrete** set of **complex** eigenfrequencies $\{\omega_n\}$

$$\Phi_n \sim e^{-i\omega_n t} = e^{-i\operatorname{Re}(\omega_n)t + \operatorname{Im}(\omega_n)t}$$

If $Im(\omega_n) > 0$ for some *n*: mode is **unstable**!

Superradiant and bound state modes

<ロ> (四) (四) (三) (三) (三) (三)

Bound state modes: localised in the potential well

Boundary conditions:

- Ingoing modes at the event horizon;
- **Exponentially decreasing** modes at infinity.

Superradiant and bound state modes

Bound state modes: localised in the potential well

Boundary conditions:

- Ingoing modes at the event horizon;
- Exponentially decreasing modes at infinity.

 $Im(\omega_n) > 0 \implies$ superradiant bound state mode \implies instability!

Eigenfrequencies for quasinormal and bound state modes

Eigenfrequencies can be obtained in closed form!

Eigenfrequencies for quasinormal and bound state modes

Eigenfrequencies can be obtained in closed form!

(+) quasinormal frequencies (-) bound state frequencies

$$(\omega_{\pm})_{n}^{(R)} = \frac{\nu^{2} + 3}{d^{2}\delta^{2} - 3(\nu^{2} - 1)} \left\{ -d\delta \left(\frac{4kd}{\nu^{2} + 3} + i\left(n + \frac{1}{2}\right) \right) \pm i(e - i\operatorname{sgn}(k)f) \right\}$$

$$\begin{split} d &= \frac{1}{r_{+} - r_{-}} , \qquad \delta = 2\nu(r_{+} + r_{-}) - 2\sqrt{(\nu^{2} + 3)r_{+}r_{-}} , \\ e &= \sqrt{\frac{\sqrt{E^{2} + F^{2} + E}}{2}} , \qquad f = \sqrt{\frac{\sqrt{E^{2} + F^{2} - E}}{2}} , \\ E &= \frac{1}{4} \left(1 + \frac{4m^{2}}{\nu^{2} + 3} \right) d^{2}\delta^{2} - 3(\nu^{2} - 1) \left[\frac{1}{4} \left(1 + \frac{4m^{2}}{\nu^{2} + 3} \right) + \left(\frac{4kd}{\nu^{2} + 3} \right)^{2} - \left(n + \frac{1}{2} \right)^{2} \right] , \\ F &= -3(\nu^{2} - 1) \left(n + \frac{1}{2} \right) \frac{8kd}{\nu^{2} + 3} . \end{split}$$

$$\square (\omega_{\pm})_{n}^{(L)} = -i \left[(2n+1)\nu \mp \sqrt{3(\nu^{2}-1)\left(n+\frac{1}{2}\right)^{2} + \frac{\nu^{2}+3}{4}\left(1+\frac{4m^{2}}{\nu^{2}+3}\right)} \right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Eigenfrequencies for quasinormal and bound state modes

Quasinormal eigenfrequencies

 $\operatorname{Im}(\omega_n) < 0$

Bound state eigenfrequencies

 $\operatorname{Re}(\omega_n) > k\Omega_{\mathcal{H}}$

 $\operatorname{Im}(\omega_n) < 0$

No superradiant instabilities, in contrast with Kerr!

Why are none of the exponentially decreasing modes superradiant?

Why are none of the exponentially decreasing modes superradiant?

The effective potential never forms a potential well

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What happens if we add an actual mirror?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

What happens if we add an actual mirror?

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Boundary conditions (for bound state modes):

- Ingoing modes at the event horizon;
- Vanishing modes at the mirror (Dirichlet boundary condition).

Right eigenfrequency $\omega_{\mathcal{M}}^{(\textit{R})}$ vs position of the mirror

Right eigenfrequency $\omega_{\mathcal{M}}^{(\textit{R})}$ vs position of the mirror

- $\blacksquare \operatorname{Re}(\omega_{\mathcal{M}}^{(R)}) > k\Omega_{\mathcal{H}}$
- $\mathsf{Re}(\omega_{\mathcal{M}}^{(R)}) o k\Omega_{\mathcal{H}}$ as $r_{\mathcal{M}} o r_+$
- $\mathsf{Re}(\omega_{\mathcal{M}}^{(R)}) o \mathsf{Re}(\omega^{(R)})$ as $r_{\mathcal{M}} \to \infty$

 $\ \, = \ \, \operatorname{Im}(\omega_{\mathcal{M}}^{(R)}) < 0 \\ \ \, = \ \, \operatorname{Im}(\omega_{\mathcal{M}}^{(R)}) \to \operatorname{Im}(\omega^{(R)}) \text{ as } r_{\mathcal{M}} \to \infty$

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Left eigenfrequency $\omega_{\mathcal{M}}^{(L)}$ vs position of the mirror

イロト 不得下 イヨト イヨト

æ.

Left eigenfrequency $\omega_{\mathcal{M}}^{(L)}$ vs position of the mirror

うして ふゆう ふほう ふほう うらつ

1 Introduction

- 2 Warped AdS₃ black holes
- 3 Existence of classical superradiance
- 4 Classical stability of warped AdS₃ black holes
- 5 QFT on warped AdS₃ black holes

6 Conclusions

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The study of QFT on black hole spacetimes have mostly been restricted to asymptotically flat and AdS spacetimes.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- The study of QFT on black hole spacetimes have mostly been restricted to asymptotically flat and AdS spacetimes.
- QFT on rotating black holes is a challenging problem:
 - Superradiant modes require care.
 - The Hartle-Hawking vacuum state is not well defined!

Frolov and Thorne (1989) Kay and Wald (1991) Ottewill and Winstanley (2000) Ottewill and Duffy (2008)

Hartle-Hawking vacuum on a warped AdS₃ black hole

Beyond the speed of light surface, the Hartle-Hawking vacuum would have to rotate with a speed greater than the speed of light.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hartle-Hawking vacuum on a warped AdS₃ black hole

Beyond the speed of light surface, the Hartle-Hawking vacuum would have to rotate with a speed greater than the speed of light.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

If a **mirror** is put between the horizon and the speed of light surface, an Hartle-Hawking vacuum is **well defined**.

AIM: compute the expectation value of the renormalised stress-energy tensor $\langle T_{\mu\nu}(x) \rangle_{ren}$ for a scalar field in the Hartle-Hawking vacuum

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

AIM: compute the expectation value of the renormalised stress-energy tensor $\langle T_{\mu\nu}(x) \rangle_{ren}$ for a scalar field in the Hartle-Hawking vacuum

- Difficulties:
 - Requires renormalisation;
 - Involved numerics.

• AIM: compute the expectation value of the renormalised stress-energy tensor $\langle T_{\mu\nu}(x) \rangle_{ren}$ for a scalar field in the Hartle-Hawking vacuum

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Difficulties:

- Requires renormalisation;
- Involved numerics.

Work in progress ...

1 Introduction

- 2 Warped AdS₃ black holes
- 3 Existence of classical superradiance
- 4 Classical stability of warped AdS₃ black holes
- 5 QFT on warped AdS₃ black holes

6 Conclusions

 Warped AdS₃ black holes are interesting solutions of Topologically Massive Gravity, an extension of Einstein gravity in 2+1 dimensions which has a massive propagating degree of freedom.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- Warped AdS₃ black holes are interesting solutions of Topologically Massive Gravity, an extension of Einstein gravity in 2+1 dimensions which has a massive propagating degree of freedom.
- Warped AdS₃ black holes are remarkably similar to the (3+1)-dimensional Kerr spacetime and, contrary to the latter, many analytical computations can be performed.

- Warped AdS₃ black holes are interesting solutions of Topologically Massive Gravity, an extension of Einstein gravity in 2+1 dimensions which has a massive propagating degree of freedom.
- Warped AdS₃ black holes are remarkably similar to the (3+1)-dimensional Kerr spacetime and, contrary to the latter, many analytical computations can be performed.
- Warped AdS₃ black holes are classically stable to scalar field perturbations, even if a mirror is added to the spacetime, in contrast with Kerr.

- Warped AdS₃ black holes are interesting solutions of Topologically Massive Gravity, an extension of Einstein gravity in 2+1 dimensions which has a massive propagating degree of freedom.
- Warped AdS₃ black holes are remarkably similar to the (3+1)-dimensional Kerr spacetime and, contrary to the latter, many analytical computations can be performed.
- Warped AdS₃ black holes are classically stable to scalar field perturbations, even if a mirror is added to the spacetime, in contrast with Kerr.
- QFT computations on warped AdS₃ black holes may give valuable insights for the Kerr case.
Is the warped AdS₃ black hole classically stable to other types of perturbations (namely gravitational perturbations)?

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- Is the warped AdS₃ black hole classically stable to other types of perturbations (namely gravitational perturbations)?
- What is the renormalised stress-energy tensor for a field in the Hartle-Hawking vacuum state? What information does it provide for the Kerr case?

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

THANK YOU FOR YOUR ATTENTION!

More information in:

Phys. Rev. D 87, 124013 (2013)

Acknowledgements:

Stanley Deser, Jorma Louko, Vitor Cardoso, Sam Dolan, Elizabeth Winstanley and Helvi Witek for helpful discussions and feedback.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ クタマ

Financial support from FCT-Portugal.