
1

Black-Hole Bombs and 
Photon-Mass Bounds 

CENTRA Seminar
IST – Lisbon, 2 November 2012

Paolo PaniPaolo Pani
 Instituto Superior Técnico – Lisbon (Portugal)

http://blackholes.ist.utl.pt

PP, Cardoso, Gualitieri, Berti, Ishibashi Phys.Rev.Lett. 109 (2012) 131102

Phys.Rev.D in press 



Goal
Dynamics of light massive fields 

around spinning black holes

● Dark matter candidates

● BHs as particle physics labs  → simple objects, no coupling 

● Open problems in BH perturbation theory
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BH superradiance

● Simple BH-matter interaction

● Kerr BH: wave amplified if

● Linear effect, but peek to backreaction

Zel'dovich effect. [Credit: Ana Sousa]

● Requires dissipation → needs an event horizon
[Thorne, Price, Macdonald's book] [Richartz et al. 2008]

[Cardoso & Pani, 2012]
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BH bomb

[Credit: Ana Sousa]

● “Nature may provide its own mirrors”

– AdS boundaries

– Massive fields

[Press and Teukolsky '72]

[Cardoso, Dias, Lemos, Yoshida, 2004]
Massive scalar potential on a 

Schwarzschild BH
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Scalar fields & superradiance

● Massive fields around spinning BHs are unstable

● Instability is well-studied in the scalar case

– Strongest instability when μM ~1

● Primordial BHs (1014 - 1023 kg) and SM particles

● Ultra-light particles (m ~ 10-21 - 10-9 eV) and massive BHs

– Axiverse scenario (QCD axions, Peccei-Quinn mechanism, etc...)

– Bosenova (numerical simulations are challenging!)

[Damour et al. 1976]

[Detweiler, 1980]

[Earley & Zouros 1979]

[Cardoso & Yoshida 2005]

[Dolan 2007]

[Rosa 2010, 2012]

[Arvanitaki et al. 2010-2011]

[Kodama & Yoshino 2011-2012]

[Witek et al, in preparation]
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Scalar fields & superradiance

[Arvanitaki et al. 2010-2011]
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Vector fields & superradiance

● The massive spin-1 around Kerr BHs still uncharted territory

– Massive hidden U(1) vector fields are generic features of extensions of SM

– Non-rotating case: conjecture of a stronger instability?

– Perturbation equations do not separate (?)  set of PDEs→

● Approaches

– Full nonlinear evolution

– Linear time evolution on a fixed background

– Frequency domain on a fixed background

[Rosa & Dolan 2011]

[Goodsel et al. 2009]

[Konoplya 2006]

[Herdeiro, Sampaio, Wang 2012]
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[Kokkotas & 

Schmidt 1998]

[Berti et al. 2009]

[Konoplya & 

Zhidenko  2011]

- The axial and polar sectors decouple:

- Solved with suitable boundary conditions  eigenvalue problem→

- Any spherically symmetric background, any theory, any field

- Regge-Wheeler formalism: AxialPolar

background perturbations

BH perturbations.  Spherical symmetry

Linear equations involving axial or polar perturbations only
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Non-separable (?) problems
● Separability in Kerr is almost a miracle!

● Four dimensions

– Massive vector (Proca) fields on a Kerr background

– Gravito-EM perturbations of Kerr-Newman BHs

– Rotating objects in alternative theories 

● Higher dimensions

– Myers-Perry BHs 

– Other rotating solutions

● Stability, greybody factors, quasinormal modes?

[Teukolsky ~ 1973]

[Teukolsky and Press]

[Chandra's book]
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Part I

Perturbations of 
slowly-rotating BHs:

General framework
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Method. Perturbations of slowly rotating spacetimes

● Slowly-rotating background metric: 

[Kojima 1992, 1993, 1997]

● Zeeman splitting

● Laporte-like selection rule

● Propensity rule

● Expand any equation (scalar, vector, tensor...) in spherical harmonics 

● For any metric, any theory and any perturbations: system of radial ODEs:

Linear combinations of axial 

and polar perturbations
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Perturbative scheme

Zeroth order: decoupled
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Perturbative scheme

Zeroth order: decoupled

First order: polar-axial l±1
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Second order: l±2

Perturbative scheme

● Generic: any metric, any perturbation, any theory, any order

First order: polar-axial l±1

Zeroth order: decoupled
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Slow-rotation method. tests

Numerics in the slow-rotation scheme are “easy” to perform

EM (massless) QNMs of a Kerr BH

● Good results even for moderately large spin

Massive scalar modes of a Kerr BH

– direct integration (bound states)   

– continued fractions (QNMs, bound states)

– Breit-Wigner method (QNMs, bound states)   

– WKB (?)

Stable

Unstable
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Part II

Proca perturbations 
of a Kerr BH
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Proca equation

● (apparently) nonseparable in a Kerr background

● Note that EM (massless) perturbations in Kerr-(A)dS are separable!

Mass

● However  role of the → gauge freedom  massless fields propage → 2 DOF

● Proca eq. implies Lorenz condition  no more freedom  → → 3 DOF

● Equivalent to gravitational theories with higher-curvature terms:
[Buchdahl '70]

[Vitagliano, Sotiriou, Liberati 2010]

Alexandru Proca
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Proca in slowly-rotating Kerr

● The Proca problem becomes tractable in the slow-rotation approximation

● Let us decompose the Proca field in vector spherical harmonics:

Axial parity Polar parity

● One spurious degree of freedom → three physical perturbation functions 

15/30



● The angular part can be eliminated using the orthogonality properties of 

the spherical harmonics. E.g. :  

Proca in slowly-rotating Kerr

● We compute the following integral:

● Useful properties of spherical harmonics:
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Proca in slowly-rotating Kerr
● From nonseparated equations:

● The system of ODEs has the general form:
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● To radial ODEs:



Proca in SR Kerr. Field equations

● Polar and axial sector are coupled:

● Where we have used the Lorenz condition and defined:
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Proca in SR Kerr. Field eqs. at second order

● System of second order ODEs:

● Near-horizon behavior:

Superradiance 
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Proca in SR Kerr. Results

Axial modes (S=0) Polar modes (S=+1,-1)

● Small mass limit:

[Rosa & Dolan 2011]
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Proca in SR Kerr. Fully coupled system

Breit-Wigner resonances Confirmed by numerical simulations 

[Witek et al., in preparation]

BeatingS = -1
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Proca in SR Kerr. Analytical results

● In the axial case  → master equation (scalar  → s=0 , axial vector  → s=1)

[Starobisky 1973]

[Detweiler 1980]

● Suitable for analytical methods

● Matching asymptotics
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Part III

Astrophysical 
consequences of the 

Proca instability
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Proca instability 
● Can we extrapolate these results to higher rotation?

● Scalar case (l=1)

● Extrapolation should provide an order of magnitude for the instability

● Proca case:

● Stronger instability when S = -1 and l=1:

[Dolan 2007]
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Proca instability. Regge plane

● Instability is effective roughly for any non-vanishing spin!

[Data taken from

 Brenneman et. al 2011]

● Current bound on the photon mass [from PDG]  →

● Depend very  mildly on the fit coefficient and on the threshold
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Proca instability
● Not strongly dependent on the timescale nor on type of mode

26/30

● From the existence of spinning BHs  →



Proca instability. Limitations

● Nonlinear effects:

– Photon self-interaction is very weak  gradual slow down→

– Might be important for exotic fields

● Accretion disk

– Hidden U(1) fields are weakly coupled to matter

– Might be relevant for massive photons, but

● Superradiant mode are coherent and λ ~ BH size

● Disks are charge neutral and matter coupling incoherent

● Equatorial disks can at most quench some unstable modes
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Part IV

QNMs of 
Kerr-Newman BHs
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Kerr-Newman BHs

● Most general rotating solution in GR

● Gravitational and EM perturbations are coupled  not separable?→

● Apply the method to slowly-rotating Reissner-Nordstrom:

[Berti & Kokkotas 2004]
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Kerr-Newman BHs

● Most general rotating solution in GR

● Gravitational and EM perturbations are coupled  not separable?→

● Apply the method to slowly-rotating Reissner-Nordstrom:

[Berti & Kokkotas 2004]

Zeroth order (i=1,2)
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Kerr-Newman BHs

● Most general rotating solution in GR

● Gravitational and EM perturbations are coupled  not separable?→

● Apply the method to slowly-rotating Reissner-Nordstrom:

– Axial sector and polar sector (isospectrality?)

1st order: Zeeman effect

[Berti & Kokkotas 2004]

Zeroth order (i=1,2) 1st order: coupliing between i and j
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Conclusion & Extensions

● Perturbation theory of rotating objects is challenging

● Slowly-rotating approximation: general method

● Spinning BHs as labs for exotic particles and modified gravity

● Proca perturbations of Kerr BHs in GR

– Strong (est?) instability

– Bounds on the photon mass, Hidden U(1) sector

● Extensions

– BHs in alternative theories (Chern-Simons, Gauss-Bonnet)

– Kerr-Newman, higher dimensions, stellar r-modes, …

[Yunes & Pretorius 2009]

[Pani et al. 2011]

[Yagi, Yunes, Tanaka 2012]
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Thanks!

thegravityroom.blogspot.com

Calls for bloggers now open!
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Backup slides
“Nothing is More Necessary 

than the Unnecessary”
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● Curiosity: similar bounds for the graviton?  probably not! (S= -2, l=2)→



● In Proca theory, the monopole (l=0,m=0) is dynamical: 

Proca in SR Kerr. Field equations

Propensity rule

● m=0  → no corrections at first order! Same modes as in Schwarzschild

● Modes can be labelled by the total angular momentum   j=l+S→

– Axial  S=0→

– Polar  S=+1 , S= -1→

– Monopole  S=+1 →

[Rosa & Dolan 2011]
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Proca instability

● Depend very  mildly on the fit coefficient and on the threshold

● τ
Salpater 

 timescale for accretion at the Eddington limit→
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● Symmetry of the equations

● At first order in the rotation, the couplings can be neglected: 

● Eigenfrequency

● “Decoupled” equations:

Method. Perturbations of slowly rotating BHs

9/35



EMRIs: imprints of light scalars

Suitable for analytical computation in the small mass limit

Quite generic effect  →  only needs a rotating BH and a light scalar

Floating orbit at Ω
p
 ~  μ

S
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Proca in SR Kerr. Results (second order)

Axial modes (S=0) Polar modes (S=+1,-1)

● Small mass limit:
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Proca in slowly-rotating Kerr

● Lorenz condition can be written in the same form as {t} or {r} components

● All coefficients can be divided in two sets:

● Proca equations can be written as

Axial coefficients Polar coefficients
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BH perturbations. Symmetries matter

● In spherically symmetry the field eqs. can be always separated

● If the background is rotating, separability is not guaranteed!

● Teukolsky formalism

– Newman-Penrose tetrad formalism, Weyl scalars

– Separability in Kerr  is almost a miracle! (Petrov Type D)

● Perturbations of generic rotating BHs are important:

– Astrophysical BHs are spinning

– Coupling to matter

– Stability (e.g. superradiance, r-modes in stars, no-hair theorem)

[Teukolsky ~ 1973]

[Teukolsky and Press]

[Chandra's book]
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Second order formalism

● Particularly  advantageous:

– Cauchy horizon, even horizons, ergosphere

– The superradiance regime is now consistent
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Outline

3/35

● BH superradiant instabilities 

● Perturbations of slowrly-rotating Bhs: general framework

● Proca instability of Kerr Bhs

● Extensions
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