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Where does a galaxy cluster come from?
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Overview Technique Simulations Real data Conclusions

Formation of large-scale structure in the Universe

At first the ripples evolve Then they interact with
independently others in non-linear ways

Early Universe
(small perturbations)

the small over-density fluctuations attract additional
mass as the Universe expands




Formation of large-scale structure in the Universe

Gravitational instability produces merger of small clumps at the

—> . . °
high peaks of the density field intersection of a filamentary

large-scale structure

GALAXY
CLUSTER

Simulation by Gauss Centre for Supercomputing
Millennium Simulation, Volker Springel, 2005 Gottlober, Khalatyan, Klypin, 2008
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How to measure the mass of galaxy clusters ?

Scaling relations

X-ray temperature

~0.5 1y, X-ray

~T500: Virial

analysis

I'y00: Yadius enclosing a matter density 200 times the
critical density of the Universe ~ 277.5 h®M /Mpc’



How to measure the mass of galaxy clusters ?

Jeans Equation
Scaling relations

X-ray temperature

Strong and Weak

~0.5 1,y,: X-ray Lensing
~0.1 1,9, SL

No assumption of
dynamical equilibrium

~T500: Virial

analysis

~[0-31ry0 I'y00: Yadius enclosing a matter density 200 times the
WL&ECT  (ritical density of the Universe ~ 277.5 h*M /Mpc’



Overview Technique Simulations Real data Conclusions

caustic technique - spherical infall model

evolves like a Friedmann for any small density structures will be
model (expanding medium) perturbation there will be a formed if, at some time,
competition between its self- the spherical region
gravity (which is attempting ceases to expand with
to increase the density) and the background universe
the general expansion of the and begins to collapse

universe (which decreases
the density)



When observed in redshift
space, the infall pattern
around a rich cluster appears
as a “trumpet” whose
amplitude .A(0) decreases
with @ (Kaiser, 1987)

from spherical infall model
(Regos & Geller, 1989)

A(6) ~ 0 (3)y [~ A2 )




Technique

Simulated data
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Ve (KITL/S)

A(r) <=> escape velocity

Caustics located Caustics
by the caustic determined by the
technique escape velocity
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but clusters accrete mass anisotropically
— the velocity field can have a substantial
non-radial random component

Ainfall model < Anon—radial



Interpretation: A(0) is the
average over a volume d°r of
the square of the l.o.s.

component of the escape <Ugsc,los> — _2¢(r)g_ ' (6)

velocity

A

A1) = (02100

esc,los

Ainfall model < Anon—radial

but clusters accrete mass anisotropically
— the velocity field can have a substantial
non-radial random component



Interpretation: A(0) is the
average over a volume d°r of
the square of the l.o.s.

component of the escape <Ugsc,los> — _2¢(r)g_ ' (6)
velocity

A

A2 (1) = (02 1)

esc,los

HOLDS INDEPENDENTLY OF THE DYNAMICAL STATE OF THE CLUSTER

but clusters accrete mass anisotropically

: . — the velocity field can have a substantial
Alnfaﬂ model < Anon—radlal non-radial random component



Mass estimate

"42 (’I“) — <U§sc,los>

<vgsc,los>

—2¢(r)g~ 1 (6)

mass of an infinitesimal shell Gdm = —2¢(r)F(r)dr = A*(r)g(8)F(r)dr

—27Gp(r)r?
¢(r)

Fs(r) = F(r)g(B) is a slowly changing

function of r

and

where F(r) =




Developed in the '90s
(Diaferio & Geller, 1997; Can be applied for
Diaferio, 1999)

Problem: it requires

hundreds of galaxy B MASS/POTENTIAL ESTIMATES

redshifts

m IDENTIFICATION OF MEMBERS
nowadays the

required data are

B | IDENTIFICATION OF SUBSTRUCTURES |

easily collectable

to simulated and real data

We have applied the caustic technique to 3000 mock catalogs, built from 100
simulated clusters with M(<r,,,) = 10"*h"'M, (Borgani et al. 2004)



arrange the galaxies in a binary tree according to a
hierarchical method

select two thresholds to cut the tree: the largest
group obtained from the upper-level threshold
identifies the cluster candidate members

build the redshift diagram of all the galaxies in the
field; locate the caustics, and identify the final cluster
members

the caustic amplitude determines the escape velocity
and mass profiles

four steps



c Blnary tree & O- plateau

binding energy
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9 Redshift diagram
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e Caustic location
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e Gravitational potential profiles
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Projection effects

Examples of individual clusters

25 _I TTTTTTTT TTTTTTTTT | TTTTTTTTT | TTTTTTTT I: 2_5 :I TTTTTTTT | TTTTTTTTT |.I _J‘ TTT L.:-I T | TTTTTTT I-I:

20 | i 20 15 :
o B s 1 s | S Escape velocity: better
= 150 1 = 15[ . . h 0
T 1 3 - fJ than 10% up to r~r,,,
= 1 = :/' a
= 1.0] 1 S0 i
1 1 ¥ ' ]

oo TR 1 0°F 1 3000 simulated clusters with

D.U :I 111 I.lll.'|-1 -I--l I I 0 K I| | T I | | I I I I | |: D.U :I | I | | 1111 || .I..I.'I"l'l I T 'I'l 'I:l | I: M20021014 h-1M®

1 2 3 1 1 2 3 4
T/ Ta0 T/ Tag0

2.5 _I TTTTTTTT TTTTTTTTT | TTTTTTTTT TTTTTTTT I: 2‘5 :I TrTTTTTTT TTTTTTTTT | TTTTTTTTT TTTTTTTT I:

2.0 - 20p :
:E 1.5 - H@ 1.5 .
s [ 1 = [ ]
=10 1 =0l ]
1 1 < e N

0.5F . 05F .

D.U:IIIIII|||||.|.|l-;|.l.|.-|"1-|||||||||||||-|-|"|'|'||||: G.D:llllll L | ] :

1 2 3 4 1 2 3 4
r/Ta T/ Ta00

Serra et al. 2011



0 Mass profiles
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Can be applied for

B MASS/POTENTIAL ESTIMATES

m IDENTIFICATION OF MEMBERS

CAUSTIC TECHNIQUE to simulated and real data

we have applied the caustic technique to 3000 mock catalogs, built from 100
simulated clusters with M(<r,,,) = 10"*h"'M, (Borgani et al. 2004)



Membership

To study the dependence of properties on the environment we

need to know whether a galaxy is member of a cluster

How to define members?

» galaxies within 3r_

——> from 3D information

» bound galaxies

> galaxies within
caustics

—> from observations

galaxies in main
group of binary tree




Membership

Vies (km/'s)

3000

mock catalogs —» identified members

—» galaxies within the caustics «

3000

Vies (km/5)

galaxies with r < 3r,,, bound galaxies

3D data —» true members

Serra et al., in prep



Membership

mock catalogs —» identified members

——» galaxies in the main group <« —

Rl 1 Al

gl i

—

1 "

3D data —» true members Serra et al., in prep

galaxies with r = 3r,, bound galaxies



galaxies within caustics compared with bound galaxies

Serra et al., in prep
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galaxies within caustics compared with bound galaxies

Serra et al., in prep
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Real data

Can be applied for

B MASS/POTENTIAL ESTIMATES

B IDENTIFICATION OF MEMBERS

CAUSTIC TECHNIQUE to simulated and real data




Equation of state of dark matter

if we do not assume that the pressure profiles
are small compared to the mass-energy density

4 G
V2P ~ > (¢ p+ pr + 2py)

— _/
~N

V20N

kinematic mass profile = &
density and pressure w

lensing mass profile - profiles of dark matter DM

1 1
b; = -P —P
L 5 N-|-2

Serra & Dominguez, 2011




EoS parameter w

Equation of state of dark matter

Coma cluster (Kubo et al GL data) CLO0Z4 cluster (Knieb et al GL data)
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Escape velocity » members
v

gravitational potential

M/L up to 40

i

CDM dominated systems

Interlopers: do they bias

the velocity dispersion
estimate?

ANY
SYSTEM
Galaxy clusters

Dwarf
spheroidal
galaxies

check the constant M(<300pc)-
Luminosity relation found by
Strigari et al. 2008 in LCDM

analysis whether we can solve
the issue of high M/L in MOND

The technique is highly versatile

Vios {km/F’}

and allows for the detection of
interlopers also at small scales




Dwarf Spheroidal Galaxies
(Fornax, Carina, Leo I, Sculptor, Sextans)

Escape velocity —» members Mass (<300pc) in ACDM
40
- 20
£

Sextans

S

() ~ Luminosity [10° Lg]

2 A p<£O0.5

s J 0.5<p<0.7

; m 07<p<09 ® Strigari et al. 2008

% © 09<p m Serra, Angus & Diaferio, 2010
= O Angus 2008



Dwarf spheroidal galaxies

!

ACDM

large amount
of dark matter

)

MOND

no dark matter?
M/L=1-3

Carina, Sextans and Sculptor have
M/L too large

identification of members with

caustic location

M/L in [1-3]

still a problem



Dwarf Spheroidal Galaxies
(Fornax, Carina, Leo I, Sculptor, Sextans)

Mass-to-light ratios in MOND
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Real data

The mass profiles calculated with the caustic technique for two real clusters (CL0024 and
Coma), combined with gravitational lensing data, yields slightly negative profiles for the dark

matter equation of state, that might be interpreted in the framework of alternative theories of
gravity (Serra & Dominguez, 2010).

The membership analysis applied to 5 dSphs has yielded results compatible with previous
mass estimates and decreases the mass-to-light ratios in MOND for two dwarfs, which

turn out to be consistent with stellar population synthesis models (Serra, Angus &
Diaferio, 2010).




Systematics: mass/potential profiles, membership

The caustic technique and gravitational lensing are the only two methods available to
measure the mass profile of clusters beyond the virial radius without assuming dynamical

equilibrium

~200 gxs in a field of 2.46 Mpc/h x 2.46 Mpc/h are enough to have an accurate escape
velocity profile

The applications of the caustic technique to a large sample of simulated clusters demonstrated
that the escape velocity is recovered with ~25% 1-0 uncertainty and the mass profile with
~50% 1-0 uncertainty up to 4r200(Serra et al. 2011).

The spread mostly originates from the assumption of spherical symmetry the same cluster
when looked from another l.o.s. gives different caustics, but the errors account for that

The technique is able to detect true members with a completeness of ~94% and a

contamination of ~8% at 3r,,, (Serra & Diaferio in prep.)




Systematics: mass/potential profiles, membership

The caustic technique and gravitational lensing are the only two methods available to
measure the mass profile of clusters beyond the virial radius without assuming dynamical

equilibrium

~200 gxs in a field of 2.46 Mpc/h x 2.46 Mpc/h are enough to have an accurate escape
velocity profile

The applications of the caustic technique to a large sample of simulated clusters demonstrated
that the escape velocity is recovered with ~25% 1-0 uncertainty and the mass profile with

~50% 1-0 uncertainty up to 4r200(Serra et al. 2011).

The spread mostly originates from the assumption of spherical symmetry the same cluster
when looked from another l.o.s. gives different caustics, but the errors account for that

The technique is able to detect true members with a completeness of ~94% and a

contamination of ~8% at 3r,,, (Serra & Diaferio in prep.)

THANK YOU!!!
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